/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: edam
  • Date: 2012-05-18 12:11:01 UTC
  • Revision ID: tim@ed.am-20120518121101-0wik922hyvjkcjdi
switched back to using classes for modes

Show diffs side-by-side

added added

removed removed

28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
76
76
******************************************************************************/
77
77
 
78
78
#include "config.h"
79
 
#include "display.h"
80
79
#include "button.h"
81
80
#include "time.h"
82
 
#include "switcher_major_mode.h"
83
 
#include "drawer.h"
84
81
#include "Arduino.h"
 
82
#include "modes/switcher_major_mode.h"
 
83
#include "modes/settings_major_mode.h"
 
84
#include "modes/analogue_clock_mode.h"
 
85
#include "modes/digital_clock_mode.h"
 
86
#include "modes/info_mode.h"
 
87
#include "modes/test_pattern_mode.h"
 
88
#include "text.h"
 
89
#include "text_renderer.h"
 
90
#include "common.h"
85
91
 
86
92
//_____________________________________________________________________________
87
93
//                                                                         data
88
94
 
89
 
 
90
95
// when non-zero, the time (in microseconds) of a new fan pulse that
91
96
// has just occurred, which means that segment drawing needs to be
92
97
// restarted
93
 
static unsigned long new_pulse_at = 0;
 
98
static unsigned long _new_pulse_at = 0;
94
99
 
95
100
// the time (in microseconds) when the last fan pulse occurred
96
 
static unsigned long last_pulse_at = 0;
 
101
static unsigned long _last_pulse_at = 0;
97
102
 
98
103
// duration (in microseconds) that a segment should be displayed
99
 
static unsigned long segment_step = 0;
 
104
static unsigned long _segment_step = 0;
100
105
 
101
106
// remainder after divisor and a tally of the remainders for each segment
102
 
static unsigned long segment_step_sub_step = 0;
103
 
static unsigned long segment_step_sub = 0;
 
107
static unsigned long _segment_step_sub_step = 0;
 
108
static unsigned long _segment_step_sub = 0;
104
109
 
105
110
// the button
106
 
static Button button( 3 );
107
 
 
108
 
// major mode
109
 
static int major_mode = 0;
110
 
 
111
 
#define MAX_MAJOR_MODES 5
 
111
static Button _button( 3 );
112
112
 
113
113
// major modes
114
 
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
 
114
static MajorMode *_modes[ 3 ];
 
115
 
 
116
// current major mode
 
117
static int _mode = 0;
115
118
 
116
119
//_____________________________________________________________________________
117
120
//                                                                         code
118
121
 
119
 
 
120
122
// perform button events
121
 
void doButtonEvents()
 
123
void do_button_events()
122
124
{
123
125
        // loop through pending events
124
 
        while( int event = button.get_event() )
 
126
        while( int event = _button.get_event() )
125
127
        {
126
128
                switch( event )
127
129
                {
128
130
                case 1:
129
131
                        // short press
130
 
                        major_modes[ major_mode ]->press();
 
132
                        _modes[ _mode ]->press();
131
133
                        break;
132
 
 
133
134
                case 2:
134
135
                        // long press
135
 
                        major_modes[ major_mode ]->long_press();
 
136
                        _modes[ _mode ]->long_press();
136
137
                        break;
137
 
 
138
138
                case 3:
139
139
                        // looooong press (change major mode)
140
 
                        do {
141
 
                                if( ++major_mode >= MAX_MAJOR_MODES )
142
 
                                        major_mode = 0;
143
 
                        } while( major_modes[ major_mode ] == NULL );
144
 
                        major_modes[ major_mode ]->activate();
 
140
                        _modes[ _mode ]->deactivate();
 
141
                        if( !_modes[ ++_mode ] ) _mode = 0;
 
142
                        _modes[ _mode ]->activate();
145
143
                        break;
146
 
 
147
144
                }
148
145
        }
149
146
}
150
147
 
151
148
 
152
149
// draw a display segment
153
 
void drawNextSegment( bool reset )
 
150
void draw_next_segment( bool reset )
154
151
{
155
152
        // keep track of segment
156
153
#if CLOCK_FORWARD
161
158
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
162
159
#endif
163
160
 
 
161
        // reset the text renderer's buffer
 
162
        TextRenderer::reset_buffer();
 
163
 
 
164
        if( reset )
 
165
        {
 
166
                _modes[ _mode ]->draw_reset();
 
167
 
 
168
                // tell the text services we're starting a new frame
 
169
                Text::draw_reset();
 
170
        }
 
171
 
164
172
        // draw
165
 
        Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
 
        if( reset ) drawer.draw_reset();
167
 
        drawer.draw( segment );
 
173
        _modes[ _mode ]->draw( segment );
 
174
 
 
175
        // TODO: remove this hack
 
176
        Text::post_draw();
 
177
 
 
178
        // draw text rednerer's buffer
 
179
        TextRenderer::output_buffer();
168
180
 
169
181
#if CLOCK_FORWARD
170
182
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
175
187
 
176
188
 
177
189
// calculate time constants when a new pulse has occurred
178
 
void calculateSegmentTimes()
 
190
void calculate_segment_times()
179
191
{
180
192
        // check for overflows, and only recalculate times if there isn't
181
193
        // one (if there is, we'll just go with the last pulse's times)
182
 
        if( new_pulse_at > last_pulse_at )
 
194
        if( _new_pulse_at > _last_pulse_at )
183
195
        {
184
196
                // new segment stepping times
185
 
                unsigned long delta = new_pulse_at - last_pulse_at;
186
 
                segment_step = delta / NUM_SEGMENTS;
187
 
                segment_step_sub = 0;
188
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
197
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
198
                _segment_step = delta / NUM_SEGMENTS;
 
199
                _segment_step_sub = 0;
 
200
                _segment_step_sub_step = delta % NUM_SEGMENTS;
189
201
        }
190
202
 
191
203
        // now we have dealt with this pulse, save the pulse time and
192
204
        // clear new_pulse_at, ready for the next pulse
193
 
        last_pulse_at = new_pulse_at;
194
 
        new_pulse_at = 0;
 
205
        _last_pulse_at = _new_pulse_at;
 
206
        _new_pulse_at = 0;
195
207
}
196
208
 
197
209
 
198
210
// wait until it is time to draw the next segment or a new pulse has
199
211
// occurred
200
 
void waitTillEndOfSegment( bool reset )
 
212
void wait_till_end_of_segment( bool reset )
201
213
{
202
214
        static unsigned long end_time = 0;
203
215
 
204
216
        // handle reset
205
217
        if( reset )
206
 
                end_time = last_pulse_at;
 
218
                end_time = _last_pulse_at;
207
219
 
208
220
        // work out the time that this segment should be displayed until
209
 
        end_time += segment_step;
210
 
        segment_step_sub += segment_step_sub_step;
211
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
212
 
                segment_step_sub -= NUM_SEGMENTS;
 
221
        end_time += _segment_step;
 
222
        _segment_step_sub += _segment_step_sub_step;
 
223
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
224
                _segment_step_sub -= NUM_SEGMENTS;
213
225
                end_time++;
214
226
        }
215
227
 
216
228
        // wait
217
 
        while( micros() < end_time && !new_pulse_at );
 
229
        while( micros() < end_time && !_new_pulse_at );
218
230
}
219
231
 
220
232
 
221
 
// ISR to handle the pulses from the fan's tachiometer
222
 
void fanPulseHandler()
 
233
// ISR to handle the pulses from the fan's tachometer
 
234
void fan_pulse_handler()
223
235
{
224
236
        // the fan actually sends two pulses per revolution. These pulses
225
237
        // may not be exactly evenly distributed around the rotation, so
230
242
        if( !ignore )
231
243
        {
232
244
                // set a new pulse time
233
 
                new_pulse_at = micros();
 
245
                _new_pulse_at = micros();
234
246
        }
235
247
}
236
248
 
238
250
// main setup
239
251
void setup()
240
252
{
241
 
        // set up an interrupt handler on pin 2 to nitice fan pulses
242
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
253
        // set up an interrupt handler on pin 2 to notice fan pulses
 
254
        attachInterrupt( 0, fan_pulse_handler, RISING );
243
255
        digitalWrite( 2, HIGH );
244
256
  
245
257
        // set up output pins (4 to 13) for the led array
250
262
        pinMode( 3, INPUT );
251
263
        digitalWrite( 3, HIGH );
252
264
        static int event_times[] = { 5, 500, 4000, 0 };
253
 
        button.set_event_times( event_times );
254
 
 
255
 
        // set up major modes
256
 
        static SwitcherMajorMode switcher_major_mode;
 
265
        _button.set_event_times( event_times );
 
266
 
 
267
        // initialise RTC
 
268
        Time::init();
 
269
 
 
270
        // init text renderer
 
271
        TextRenderer::init();
 
272
 
 
273
        // reset text
 
274
        Text::reset();
 
275
        leds_off();
 
276
 
 
277
        static SwitcherMajorMode switcher;
 
278
        static SettingsMajorMode settings;
 
279
 
 
280
        // add major modes
257
281
        int mode = 0;
258
 
        major_modes[ mode++ ] = &switcher_major_mode;
259
 
        major_modes[ 0 ]->activate();
 
282
        _modes[ mode++ ] = &switcher;
 
283
        _modes[ mode++ ] = &settings;
 
284
        _modes[ mode ] = 0;
 
285
 
 
286
        // activate the current major mode
 
287
        _modes[ _mode ]->activate();
260
288
}
261
289
 
262
290
 
264
292
void loop()
265
293
{
266
294
        // if there has been a new pulse, we'll be resetting the display
267
 
        bool reset = new_pulse_at? true : false;
 
295
        bool reset = _new_pulse_at? true : false;
268
296
 
269
297
        // update button
270
 
        button.update();
 
298
        _button.update();
271
299
 
272
300
        // only do this stuff at the start of a display cycle, to ensure
273
301
        // that no state changes mid-display
274
302
        if( reset )
275
303
        {
276
304
                // calculate segment times
277
 
                calculateSegmentTimes();
 
305
                calculate_segment_times();
278
306
 
279
307
                // keep track of time
280
 
                Time &time = Time::get_instance();
281
 
                time.update();
 
308
                Time::update();
282
309
 
283
310
                // perform button events
284
 
                doButtonEvents();
 
311
                do_button_events();
285
312
        }
286
313
 
287
314
        // draw this segment
288
 
        drawNextSegment( reset );
 
315
        draw_next_segment( reset );
289
316
 
290
317
        // wait till it's time to draw the next segment
291
 
        waitTillEndOfSegment( reset );
 
318
        wait_till_end_of_segment( reset );
292
319
}