21
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
24
92
//_____________________________________________________________________________
28
95
// when non-zero, the time (in microseconds) of a new fan pulse that
29
96
// has just occurred, which means that segment drawing needs to be
31
static unsigned long new_pulse_at = 0;
98
static unsigned long _new_pulse_at = 0;
33
100
// the time (in microseconds) when the last fan pulse occurred
34
static unsigned long last_pulse_at = 0;
101
static unsigned long _last_pulse_at = 0;
36
103
// duration (in microseconds) that a segment should be displayed
37
static unsigned long segment_step = 0;
104
static unsigned long _segment_step = 0;
39
106
// remainder after divisor and a tally of the remainders for each segment
40
static unsigned long segment_step_sub_step = 0;
41
static unsigned long segment_step_sub = 0;
43
// number of segments in a full display (rotation) is 60 (one per
44
// second) times the desired number of sub-divisions of a second
45
#define NUM_SEGMENTS ( 60 * 5 )
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
111
static Button _button( 3 );
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
48
119
//_____________________________________________________________________________
52
// ISR to handle the pulses from the fan's tachiometer
53
void fanPulseHandler()
122
// perform button events
123
void do_button_events()
55
// the fan actually sends two pulses per revolution. These pulses
56
// may not be exactly evenly distributed around the rotation, so
57
// we can't recalculate times on every pulse. Instead, we ignore
58
// every other pulse so timings are based on a complete rotation.
59
static bool ignore = true;
125
// loop through pending events
126
while( int event = _button.get_event() )
63
// set a new pulse time
64
new_pulse_at = micros();
132
_modes[ _mode ]->press();
136
_modes[ _mode ]->long_press();
139
// looooong press (change major mode)
140
_modes[ _mode ]->deactivate();
141
if( !_modes[ ++_mode ] ) _mode = 0;
142
_modes[ _mode ]->activate();
69
// draw a particular segment
70
void drawNextSegment( bool reset )
149
// draw a display segment
150
void draw_next_segment( bool reset )
72
static unsigned int segment = 0;
73
if( reset ) segment = 0;
76
for( int a = 0; a < 10; a++ )
77
digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
152
// keep track of segment
154
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
155
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
157
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
158
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
161
// reset the text renderer's buffer
162
TextRenderer::reset_buffer();
166
_modes[ _mode ]->draw_reset();
168
// tell the text services we're starting a new frame
173
_modes[ _mode ]->draw( segment );
175
// TODO: remove this hack
178
// draw text rednerer's buffer
179
TextRenderer::output_buffer();
182
if( ++segment >= NUM_SEGMENTS ) segment = 0;
184
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
81
189
// calculate time constants when a new pulse has occurred
82
void calculateSegmentTimes()
190
void calculate_segment_times()
84
192
// check for overflows, and only recalculate times if there isn't
85
193
// one (if there is, we'll just go with the last pulse's times)
86
if( new_pulse_at > last_pulse_at )
194
if( _new_pulse_at > _last_pulse_at )
88
196
// new segment stepping times
89
unsigned long delta = new_pulse_at - last_pulse_at;
90
segment_step = delta / NUM_SEGMENTS;
92
segment_step_sub_step = delta % NUM_SEGMENTS;
197
unsigned long delta = _new_pulse_at - _last_pulse_at;
198
_segment_step = delta / NUM_SEGMENTS;
199
_segment_step_sub = 0;
200
_segment_step_sub_step = delta % NUM_SEGMENTS;
95
203
// now we have dealt with this pulse, save the pulse time and
96
204
// clear new_pulse_at, ready for the next pulse
97
last_pulse_at = new_pulse_at;
205
_last_pulse_at = _new_pulse_at;
102
210
// wait until it is time to draw the next segment or a new pulse has
104
void waitTillNextSegment( bool reset )
212
void wait_till_end_of_segment( bool reset )
106
214
static unsigned long end_time = 0;
110
end_time = last_pulse_at;
218
end_time = _last_pulse_at;
112
220
// work out the time that this segment should be displayed until
113
end_time += segment_step;
114
semgment_step_sub += semgment_step_sub_step;
115
if( semgment_step_sub >= NUM_SEGMENTS ) {
116
semgment_step_sub -= NUM_SEGMENTS;
221
end_time += _segment_step;
222
_segment_step_sub += _segment_step_sub_step;
223
if( _segment_step_sub >= NUM_SEGMENTS ) {
224
_segment_step_sub -= NUM_SEGMENTS;
121
while( micros() < end_time && !new_pulse_at );
229
while( micros() < end_time && !_new_pulse_at );
233
// ISR to handle the pulses from the fan's tachometer
234
void fan_pulse_handler()
236
// the fan actually sends two pulses per revolution. These pulses
237
// may not be exactly evenly distributed around the rotation, so
238
// we can't recalculate times on every pulse. Instead, we ignore
239
// every other pulse so timings are based on a complete rotation.
240
static bool ignore = true;
244
// set a new pulse time
245
_new_pulse_at = micros();
128
// set up an interrupt handler on pin 2 to nitice fan pulses
129
attachInterrupt( 0, fanPulseHandler, RISING );
253
// set up an interrupt handler on pin 2 to notice fan pulses
254
attachInterrupt( 0, fan_pulse_handler, RISING );
130
255
digitalWrite( 2, HIGH );
132
257
// set up output pins (4 to 13) for the led array
133
258
for( int a = 4; a < 14; a++ )
134
259
pinMode( a, OUTPUT );
137
Serial.begin( 9600 );
261
// set up mode-switch button on pin 3
263
digitalWrite( 3, HIGH );
264
static int event_times[] = { 5, 500, 4000, 0 };
265
_button.set_event_times( event_times );
268
// Time::load_time();
270
// init text renderer
271
TextRenderer::init();
277
static SwitcherMajorMode switcher;
278
static SettingsMajorMode settings( _button );
282
_modes[ mode++ ] = &switcher;
283
_modes[ mode++ ] = &settings;
286
// activate the current major mode
287
_modes[ _mode ]->activate();