/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-05-18 18:29:50 UTC
  • Revision ID: tim@ed.am-20120518182950-t85bn9a21n72uzm8
text messages are now individually enabled and draw()n automatically

Show diffs side-by-side

added added

removed removed

 
1
/* -*- mode: c++; compile-command: "make"; -*- */
1
2
/*
2
3
 * propeller-clock.ino
3
4
 *
27
28
 
28
29
 * a PC fan is wired up to a 12V power supply
29
30
 
30
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
32
33
 
33
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
34
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
35
36
   13 is at the outside.
36
37
 
37
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
38
39
   used to indirectly drive a transistor which in turn drives several
39
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
40
41
 
41
42
 * a button should be attached to pin 3 that grounds it when pressed.
42
43
 
43
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
45
 
45
46
Implementation details:
46
47
 
49
50
 * the timing of the drawing of the clock face is recalculated with
50
51
   every rotation of the propeller.
51
52
    
52
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
53
54
   software skips every other one. This means that the clock may
54
55
   appear upside-down if started with the propeller in the wrong
55
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
56
57
   the propeller must be in when starting the clock.
57
58
    
58
59
Usage instructions:
74
75
 
75
76
******************************************************************************/
76
77
 
77
 
 
78
 
#include <Bounce.h>
79
 
#include <DS1307.h>
80
 
#include <Wire.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "modes/switcher_major_mode.h"
 
83
#include "modes/settings_major_mode.h"
 
84
#include "modes/analogue_clock_mode.h"
 
85
#include "modes/digital_clock_mode.h"
 
86
#include "modes/info_mode.h"
 
87
#include "modes/test_pattern_mode.h"
 
88
#include "text.h"
 
89
#include "text_renderer.h"
 
90
#include "common.h"
81
91
 
82
92
//_____________________________________________________________________________
83
93
//                                                                         data
84
94
 
85
 
 
86
95
// when non-zero, the time (in microseconds) of a new fan pulse that
87
96
// has just occurred, which means that segment drawing needs to be
88
97
// restarted
89
 
static unsigned long new_pulse_at = 0;
 
98
static unsigned long _new_pulse_at = 0;
90
99
 
91
100
// the time (in microseconds) when the last fan pulse occurred
92
 
static unsigned long last_pulse_at = 0;
 
101
static unsigned long _last_pulse_at = 0;
93
102
 
94
103
// duration (in microseconds) that a segment should be displayed
95
 
static unsigned long segment_step = 0;
 
104
static unsigned long _segment_step = 0;
96
105
 
97
106
// remainder after divisor and a tally of the remainders for each segment
98
 
static unsigned long segment_step_sub_step = 0;
99
 
static unsigned long segment_step_sub = 0;
100
 
 
101
 
// flag to indicate that the drawing mode should be cycled to the next one
102
 
static bool inc_draw_mode = false;
103
 
 
104
 
// a bounce-managed button
105
 
static Bounce button( 3, 5 );
106
 
 
107
 
// the time
108
 
static int time_hours = 0;
109
 
static int time_minutes = 0;
110
 
static int time_seconds = 0;
111
 
 
112
 
// number of segments in a full display (rotation) is 60 (one per
113
 
// second) times the desired number of sub-divisions of a second
114
 
#define NUM_SECOND_SEGMENTS 5
115
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
107
static unsigned long _segment_step_sub_step = 0;
 
108
static unsigned long _segment_step_sub = 0;
 
109
 
 
110
// the button
 
111
static Button _button( 3 );
 
112
 
 
113
// major modes
 
114
static MajorMode *_modes[ 3 ];
 
115
 
 
116
// current major mode
 
117
static int _mode = 0;
116
118
 
117
119
//_____________________________________________________________________________
118
120
//                                                                         code
119
121
 
120
 
 
121
 
// check for button presses
122
 
void checkButtons()
123
 
{
124
 
        // update buttons
125
 
        button.update();
126
 
 
127
 
        // notice button presses
128
 
        if( button.risingEdge() )
129
 
                inc_draw_mode = true;
130
 
}
131
 
 
132
 
 
133
 
// keep track of time
134
 
void trackTime()
135
 
{
136
 
        // previous time and any carried-over milliseconds
137
 
        static unsigned long last_time = millis();
138
 
        static unsigned long carry = 0;
139
 
 
140
 
        // how many milliseonds have elapsed since we last checked?
141
 
        unsigned long next_time = millis();
142
 
        unsigned long delta = next_time - last_time + carry;
143
 
 
144
 
        // update the previous time and carried-over milliseconds
145
 
        last_time = next_time;
146
 
        carry = delta % 1000;
147
 
 
148
 
        // add the seconds that have passed to the time
149
 
        time_seconds += delta / 1000;
150
 
        while( time_seconds >= 60 ) {
151
 
                time_seconds -= 60;
152
 
                time_minutes++;
153
 
                if( time_minutes >= 60 ) {
154
 
                        time_minutes -= 60;
155
 
                        time_hours++;
156
 
                        if( time_hours >= 24 )
157
 
                                time_hours -= 24;
 
122
// perform button events
 
123
void do_button_events()
 
124
{
 
125
        // loop through pending events
 
126
        while( int event = _button.get_event() )
 
127
        {
 
128
                switch( event )
 
129
                {
 
130
                case 1:
 
131
                        // short press
 
132
                        _modes[ _mode ]->press();
 
133
                        break;
 
134
                case 2:
 
135
                        // long press
 
136
                        _modes[ _mode ]->long_press();
 
137
                        break;
 
138
                case 3:
 
139
                        // looooong press (change major mode)
 
140
                        _modes[ _mode ]->deactivate();
 
141
                        if( !_modes[ ++_mode ] ) _mode = 0;
 
142
                        _modes[ _mode ]->activate();
 
143
                        break;
158
144
                }
159
145
        }
160
146
}
161
147
 
162
148
 
163
 
// turn an led on/off
164
 
void ledOn( int num, bool on )
165
 
{
166
 
        if( num < 0 || num > 9 ) return;
167
 
 
168
 
        // convert to pin no.
169
 
        num += 4;
170
 
 
171
 
        // pin 4 needs to be inverted (it's driving a PNP)
172
 
        if( num == 4 ) on = !on;
173
 
 
174
 
        digitalWrite( num, on? HIGH : LOW );
175
 
}
176
 
 
177
 
 
178
 
// draw a segment for the test display
179
 
void drawNextSegment_test( bool reset )
 
149
// draw a display segment
 
150
void draw_next_segment( bool reset )
180
151
{
181
152
        // keep track of segment
182
 
        static unsigned int segment = 0;
183
 
        if( reset ) segment = 0;
184
 
        segment++;
185
 
 
186
 
        // turn on inside and outside LEDs
187
 
        ledOn( 0, true );
188
 
        ledOn( 9, true );
189
 
 
190
 
        // display segment number in binary across in the inside LEDs,
191
 
        // with the LED on pin 12 showing the least-significant bit
192
 
        for( int a = 0; a < 8; a++ )
193
 
                ledOn( 8 - a, ( segment >> a ) & 1 );
194
 
}
195
 
 
196
 
 
197
 
// draw a segment for the time display
198
 
void drawNextSegment_time( bool reset )
199
 
{
200
 
        static int second = 0;
201
 
        static int segment = 0;
202
 
 
203
 
        // handle display reset
204
 
        if( reset ) {
205
 
                second = 0;
206
 
                segment = 0;
207
 
        }
208
 
 
209
 
        // what needs to be drawn?
210
 
        bool draw_tick = !segment && second % 5 == 0;
211
 
        bool draw_second = !segment && second == time_seconds;
212
 
        bool draw_minute = !segment && second == time_minutes;
213
 
        bool draw_hour = !segment && second == time_hours;
214
 
 
215
 
        // set the LEDs
216
 
        ledOn( 9, true );
217
 
        ledOn( 8, draw_tick || draw_minute );
218
 
        for( int a = 6; a <= 7; a++ )
219
 
                ledOn( a, draw_minute || draw_second );
220
 
        for( int a = 0; a <= 5; a++ )
221
 
                ledOn( a, draw_minute || draw_second || draw_hour );
222
 
 
223
 
        // inc position
224
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
225
 
                segment = 0;
226
 
                second++;
227
 
        }
228
 
}
229
 
 
230
 
 
231
 
// draw a display segment
232
 
void drawNextSegment( bool reset )
233
 
{
234
 
        static int draw_mode = 0;
235
 
 
236
 
        // handle mode switch requests
237
 
        if( reset && inc_draw_mode ) {
238
 
                inc_draw_mode = false;
239
 
                draw_mode++;
240
 
                if( draw_mode >= 2 )
241
 
                        draw_mode = 0;
242
 
        }
243
 
 
244
 
        // draw the segment
245
 
        switch( draw_mode ) {
246
 
        case 0: drawNextSegment_test( reset ); break;
247
 
        case 1: drawNextSegment_time( reset ); break;
248
 
        }
 
153
#if CLOCK_FORWARD
 
154
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
155
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
156
#else
 
157
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
158
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
159
#endif
 
160
 
 
161
        // reset the text renderer's buffer
 
162
        TextRenderer::reset_buffer();
 
163
 
 
164
        if( reset )
 
165
        {
 
166
                _modes[ _mode ]->draw_reset();
 
167
 
 
168
                // tell the text services we're starting a new frame
 
169
                Text::draw_reset();
 
170
        }
 
171
 
 
172
        // draw
 
173
        _modes[ _mode ]->draw( segment );
 
174
 
 
175
        // draw text
 
176
        Text::draw( segment );
 
177
 
 
178
        // draw text rednerer's buffer
 
179
        TextRenderer::output_buffer();
 
180
 
 
181
#if CLOCK_FORWARD
 
182
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
183
#else
 
184
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
185
#endif
249
186
}
250
187
 
251
188
 
252
189
// calculate time constants when a new pulse has occurred
253
 
void calculateSegmentTimes()
 
190
void calculate_segment_times()
254
191
{
255
192
        // check for overflows, and only recalculate times if there isn't
256
193
        // one (if there is, we'll just go with the last pulse's times)
257
 
        if( new_pulse_at > last_pulse_at )
 
194
        if( _new_pulse_at > _last_pulse_at )
258
195
        {
259
196
                // new segment stepping times
260
 
                unsigned long delta = new_pulse_at - last_pulse_at;
261
 
                segment_step = delta / NUM_SEGMENTS;
262
 
                segment_step_sub = 0;
263
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
197
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
198
                _segment_step = delta / NUM_SEGMENTS;
 
199
                _segment_step_sub = 0;
 
200
                _segment_step_sub_step = delta % NUM_SEGMENTS;
264
201
        }
265
202
 
266
203
        // now we have dealt with this pulse, save the pulse time and
267
204
        // clear new_pulse_at, ready for the next pulse
268
 
        last_pulse_at = new_pulse_at;
269
 
        new_pulse_at = 0;
 
205
        _last_pulse_at = _new_pulse_at;
 
206
        _new_pulse_at = 0;
270
207
}
271
208
 
272
209
 
273
210
// wait until it is time to draw the next segment or a new pulse has
274
211
// occurred
275
 
void waitTillNextSegment( bool reset )
 
212
void wait_till_end_of_segment( bool reset )
276
213
{
277
214
        static unsigned long end_time = 0;
278
215
 
279
216
        // handle reset
280
217
        if( reset )
281
 
                end_time = last_pulse_at;
 
218
                end_time = _last_pulse_at;
282
219
 
283
220
        // work out the time that this segment should be displayed until
284
 
        end_time += segment_step;
285
 
        segment_step_sub += segment_step_sub_step;
286
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
287
 
                segment_step_sub -= NUM_SEGMENTS;
 
221
        end_time += _segment_step;
 
222
        _segment_step_sub += _segment_step_sub_step;
 
223
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
224
                _segment_step_sub -= NUM_SEGMENTS;
288
225
                end_time++;
289
226
        }
290
227
 
291
228
        // wait
292
 
        while( micros() < end_time && !new_pulse_at );
 
229
        while( micros() < end_time && !_new_pulse_at );
293
230
}
294
231
 
295
232
 
296
 
// ISR to handle the pulses from the fan's tachiometer
297
 
void fanPulseHandler()
 
233
// ISR to handle the pulses from the fan's tachometer
 
234
void fan_pulse_handler()
298
235
{
299
236
        // the fan actually sends two pulses per revolution. These pulses
300
237
        // may not be exactly evenly distributed around the rotation, so
305
242
        if( !ignore )
306
243
        {
307
244
                // set a new pulse time
308
 
                new_pulse_at = micros();
 
245
                _new_pulse_at = micros();
309
246
        }
310
247
}
311
248
 
313
250
// main setup
314
251
void setup()
315
252
{
316
 
        // set up an interrupt handler on pin 2 to nitice fan pulses
317
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
253
        // set up an interrupt handler on pin 2 to notice fan pulses
 
254
        attachInterrupt( 0, fan_pulse_handler, RISING );
318
255
        digitalWrite( 2, HIGH );
319
256
  
320
257
        // set up output pins (4 to 13) for the led array
323
260
 
324
261
        // set up mode-switch button on pin 3
325
262
        pinMode( 3, INPUT );
326
 
 
327
 
        // get the time from the real-time clock
328
 
        int rtc_data[ 7 ];
329
 
        RTC.get( rtc_data, true );
330
 
        time_hours = rtc_data[ DS1307_HR ];
331
 
        time_minutes = rtc_data[ DS1307_MIN ];
332
 
        time_seconds = rtc_data[ DS1307_SEC ];
333
 
 
334
 
        // serial comms
335
 
        Serial.begin( 9600 );
 
263
        digitalWrite( 3, HIGH );
 
264
        static int event_times[] = { 5, 500, 4000, 0 };
 
265
        _button.set_event_times( event_times );
 
266
 
 
267
        // initialise RTC
 
268
//      Time::load_time();
 
269
 
 
270
        // init text renderer
 
271
        TextRenderer::init();
 
272
 
 
273
        // reset text
 
274
        Text::reset();
 
275
        leds_off();
 
276
 
 
277
        static SwitcherMajorMode switcher;
 
278
        static SettingsMajorMode settings( _button );
 
279
 
 
280
        // add major modes
 
281
        int mode = 0;
 
282
        _modes[ mode++ ] = &switcher;
 
283
        _modes[ mode++ ] = &settings;
 
284
        _modes[ mode ] = 0;
 
285
 
 
286
        // activate the current major mode
 
287
        _modes[ _mode ]->activate();
336
288
}
337
289
 
338
290
 
340
292
void loop()
341
293
{
342
294
        // if there has been a new pulse, we'll be resetting the display
343
 
        bool reset = new_pulse_at? true : false;
 
295
        bool reset = _new_pulse_at? true : false;
 
296
 
 
297
        // update button
 
298
        _button.update();
344
299
 
345
300
        // only do this stuff at the start of a display cycle, to ensure
346
301
        // that no state changes mid-display
347
302
        if( reset )
348
303
        {
349
 
                // check buttons
350
 
                checkButtons();
 
304
                // calculate segment times
 
305
                calculate_segment_times();
351
306
 
352
307
                // keep track of time
353
 
                trackTime();
 
308
                Time::update();
 
309
 
 
310
                // perform button events
 
311
                do_button_events();
354
312
        }
355
313
 
356
314
        // draw this segment
357
 
        drawNextSegment( reset );
358
 
 
359
 
        // do we need to recalculate segment times?
360
 
        if( reset )
361
 
                calculateSegmentTimes();
 
315
        draw_next_segment( reset );
362
316
 
363
317
        // wait till it's time to draw the next segment
364
 
        waitTillNextSegment( reset );
 
318
        wait_till_end_of_segment( reset );
365
319
}