29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
85
92
//_____________________________________________________________________________
89
95
// when non-zero, the time (in microseconds) of a new fan pulse that
90
96
// has just occurred, which means that segment drawing needs to be
92
static unsigned long new_pulse_at = 0;
98
static unsigned long _new_pulse_at = 0;
94
100
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long last_pulse_at = 0;
101
static unsigned long _last_pulse_at = 0;
97
103
// duration (in microseconds) that a segment should be displayed
98
static unsigned long segment_step = 0;
104
static unsigned long _segment_step = 0;
100
106
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
111
static Button _button( 3 );
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
119
// interupt handler's "ignore every other" flag
120
static bool _pulse_ignore = true;
115
122
//_____________________________________________________________________________
119
125
// perform button events
120
void doButtonEvents()
126
void do_button_events()
122
128
// loop through pending events
123
while( int event = button.get_event() )
129
while( int event = _button.get_event() )
129
major_modes[ major_mode ]->press();
135
_modes[ _mode ]->press();
134
major_modes[ major_mode ]->long_press();
139
_modes[ _mode ]->long_press();
138
142
// looooong press (change major mode)
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
143
_modes[ _mode ]->deactivate();
144
if( !_modes[ ++_mode ] ) _mode = 0;
145
_modes[ _mode ]->activate();
148
// switch display upside-down
149
_pulse_ignore = !_pulse_ignore;
151
156
// draw a display segment
152
void drawNextSegment( bool reset )
157
void draw_next_segment( bool reset )
154
159
// keep track of segment
160
static int segment = 0;
155
161
#if CLOCK_FORWARD
156
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
157
162
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
159
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
160
164
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
167
// reset the text renderer's buffer
168
TextRenderer::reset_buffer();
172
_modes[ _mode ]->draw_reset();
174
// tell the text services we're starting a new frame
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
179
_modes[ _mode ]->draw( segment );
182
Text::draw( segment );
184
// draw text rednerer's buffer
185
TextRenderer::output_buffer();
168
187
#if CLOCK_FORWARD
169
188
if( ++segment >= NUM_SEGMENTS ) segment = 0;
176
195
// calculate time constants when a new pulse has occurred
177
void calculateSegmentTimes()
196
void calculate_segment_times()
179
198
// check for overflows, and only recalculate times if there isn't
180
199
// one (if there is, we'll just go with the last pulse's times)
181
if( new_pulse_at > last_pulse_at )
200
if( _new_pulse_at > _last_pulse_at )
183
202
// new segment stepping times
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
203
unsigned long delta = _new_pulse_at - _last_pulse_at;
204
_segment_step = delta / NUM_SEGMENTS;
205
_segment_step_sub = 0;
206
_segment_step_sub_step = delta % NUM_SEGMENTS;
190
209
// now we have dealt with this pulse, save the pulse time and
191
210
// clear new_pulse_at, ready for the next pulse
192
last_pulse_at = new_pulse_at;
211
_last_pulse_at = _new_pulse_at;
197
216
// wait until it is time to draw the next segment or a new pulse has
199
void waitTillEndOfSegment( bool reset )
218
void wait_till_end_of_segment( bool reset )
201
220
static unsigned long end_time = 0;
205
end_time = last_pulse_at;
224
end_time = _last_pulse_at;
207
226
// work out the time that this segment should be displayed until
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
227
end_time += _segment_step;
228
_segment_step_sub += _segment_step_sub_step;
229
if( _segment_step_sub >= NUM_SEGMENTS ) {
230
_segment_step_sub -= NUM_SEGMENTS;
216
while( micros() < end_time && !new_pulse_at );
235
while( micros() < end_time && !_new_pulse_at );
220
// ISR to handle the pulses from the fan's tachiometer
221
void fanPulseHandler()
239
// ISR to handle the pulses from the fan's tachometer
240
void fan_pulse_handler()
223
242
// the fan actually sends two pulses per revolution. These pulses
224
243
// may not be exactly evenly distributed around the rotation, so
225
244
// we can't recalculate times on every pulse. Instead, we ignore
226
245
// every other pulse so timings are based on a complete rotation.
227
static bool ignore = true;
246
_pulse_ignore = !_pulse_ignore;
231
249
// set a new pulse time
232
new_pulse_at = micros();
250
_new_pulse_at = micros();
248
266
// set up mode-switch button on pin 3
249
267
pinMode( 3, INPUT );
250
268
digitalWrite( 3, HIGH );
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
269
static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
_button.set_event_times( event_times );
275
// init text renderer
276
TextRenderer::init();
282
static SwitcherMajorMode switcher;
283
static SettingsMajorMode settings( _button );
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
287
_modes[ mode++ ] = &switcher;
288
_modes[ mode++ ] = &settings;
291
// activate the current major mode
292
_modes[ _mode ]->activate();
265
299
// if there has been a new pulse, we'll be resetting the display
266
bool reset = new_pulse_at? true : false;
300
bool reset = _new_pulse_at? true : false;
271
305
// only do this stuff at the start of a display cycle, to ensure
272
306
// that no state changes mid-display
275
309
// calculate segment times
276
calculateSegmentTimes();
310
calculate_segment_times();
278
312
// keep track of time
279
Time &time = Time::get_instance();
282
315
// perform button events
286
319
// draw this segment
287
drawNextSegment( reset );
320
draw_next_segment( reset );
289
322
// wait till it's time to draw the next segment
290
waitTillEndOfSegment( reset );
323
wait_till_end_of_segment( reset );