29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
84
81
#include "Arduino.h"
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
86
92
//_____________________________________________________________________________
90
95
// when non-zero, the time (in microseconds) of a new fan pulse that
91
96
// has just occurred, which means that segment drawing needs to be
93
static unsigned long new_pulse_at = 0;
98
static unsigned long _new_pulse_at = 0;
95
100
// the time (in microseconds) when the last fan pulse occurred
96
static unsigned long last_pulse_at = 0;
101
static unsigned long _last_pulse_at = 0;
98
103
// duration (in microseconds) that a segment should be displayed
99
static unsigned long segment_step = 0;
104
static unsigned long _segment_step = 0;
101
106
// remainder after divisor and a tally of the remainders for each segment
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
111
static Button _button( 3 );
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
119
// interupt handler's "ignore every other" flag
120
static bool _pulse_ignore = true;
116
122
//_____________________________________________________________________________
120
125
// perform button events
121
void doButtonEvents()
126
void do_button_events()
123
128
// loop through pending events
124
while( int event = button.get_event() )
129
while( int event = _button.get_event() )
130
major_modes[ major_mode ]->press();
135
_modes[ _mode ]->press();
135
major_modes[ major_mode ]->long_press();
139
_modes[ _mode ]->long_press();
139
142
// looooong press (change major mode)
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
143
_modes[ _mode ]->deactivate();
144
if( !_modes[ ++_mode ] ) _mode = 0;
145
_modes[ _mode ]->activate();
148
// switch display upside-down
149
_pulse_ignore = !_pulse_ignore;
152
156
// draw a display segment
153
void drawNextSegment( bool reset )
157
void draw_next_segment( bool reset )
155
159
// keep track of segment
160
static int segment = 0;
156
161
#if CLOCK_FORWARD
157
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
158
162
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
160
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
161
164
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
167
// reset the text renderer's buffer
168
TextRenderer::reset_buffer();
172
_modes[ _mode ]->draw_reset();
174
// tell the text services we're starting a new frame
165
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
179
_modes[ _mode ]->draw( segment );
182
Text::draw( segment );
184
// draw text rednerer's buffer
185
TextRenderer::output_buffer();
169
187
#if CLOCK_FORWARD
170
188
if( ++segment >= NUM_SEGMENTS ) segment = 0;
177
195
// calculate time constants when a new pulse has occurred
178
void calculateSegmentTimes()
196
void calculate_segment_times()
180
198
// check for overflows, and only recalculate times if there isn't
181
199
// one (if there is, we'll just go with the last pulse's times)
182
if( new_pulse_at > last_pulse_at )
200
if( _new_pulse_at > _last_pulse_at )
184
202
// new segment stepping times
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
203
unsigned long delta = _new_pulse_at - _last_pulse_at;
204
_segment_step = delta / NUM_SEGMENTS;
205
_segment_step_sub = 0;
206
_segment_step_sub_step = delta % NUM_SEGMENTS;
191
209
// now we have dealt with this pulse, save the pulse time and
192
210
// clear new_pulse_at, ready for the next pulse
193
last_pulse_at = new_pulse_at;
211
_last_pulse_at = _new_pulse_at;
198
216
// wait until it is time to draw the next segment or a new pulse has
200
void waitTillEndOfSegment( bool reset )
218
void wait_till_end_of_segment( bool reset )
202
220
static unsigned long end_time = 0;
206
end_time = last_pulse_at;
224
end_time = _last_pulse_at;
208
226
// work out the time that this segment should be displayed until
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
227
end_time += _segment_step;
228
_segment_step_sub += _segment_step_sub_step;
229
if( _segment_step_sub >= NUM_SEGMENTS ) {
230
_segment_step_sub -= NUM_SEGMENTS;
217
while( micros() < end_time && !new_pulse_at );
235
while( micros() < end_time && !_new_pulse_at );
221
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
239
// ISR to handle the pulses from the fan's tachometer
240
void fan_pulse_handler()
224
242
// the fan actually sends two pulses per revolution. These pulses
225
243
// may not be exactly evenly distributed around the rotation, so
226
244
// we can't recalculate times on every pulse. Instead, we ignore
227
245
// every other pulse so timings are based on a complete rotation.
228
static bool ignore = true;
246
_pulse_ignore = !_pulse_ignore;
232
249
// set a new pulse time
233
new_pulse_at = micros();
250
_new_pulse_at = micros();
249
266
// set up mode-switch button on pin 3
250
267
pinMode( 3, INPUT );
251
268
digitalWrite( 3, HIGH );
252
static int event_times[] = { 5, 500, 4000, 0 };
253
button.set_event_times( event_times );
255
// set up major modes
256
static SwitcherMajorMode switcher_major_mode;
269
static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
_button.set_event_times( event_times );
275
// init text renderer
276
TextRenderer::init();
282
static SwitcherMajorMode switcher;
283
static SettingsMajorMode settings( _button );
258
major_modes[ mode++ ] = &switcher_major_mode;
259
major_modes[ 0 ]->activate();
287
_modes[ mode++ ] = &switcher;
288
_modes[ mode++ ] = &settings;
291
// activate the current major mode
292
_modes[ _mode ]->activate();
266
299
// if there has been a new pulse, we'll be resetting the display
267
bool reset = new_pulse_at? true : false;
300
bool reset = _new_pulse_at? true : false;
272
305
// only do this stuff at the start of a display cycle, to ensure
273
306
// that no state changes mid-display
276
309
// calculate segment times
277
calculateSegmentTimes();
310
calculate_segment_times();
279
312
// keep track of time
280
Time &time = Time::get_instance();
283
315
// perform button events
287
319
// draw this segment
288
drawNextSegment( reset );
320
draw_next_segment( reset );
290
322
// wait till it's time to draw the next segment
291
waitTillEndOfSegment( reset );
323
wait_till_end_of_segment( reset );