21
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
24
92
//_____________________________________________________________________________
28
95
// when non-zero, the time (in microseconds) of a new fan pulse that
29
96
// has just occurred, which means that segment drawing needs to be
31
static unsigned long new_pulse_at = 0;
98
static unsigned long _new_pulse_at = 0;
33
100
// the time (in microseconds) when the last fan pulse occurred
34
static unsigned long last_pulse_at = 0;
101
static unsigned long _last_pulse_at = 0;
36
103
// duration (in microseconds) that a segment should be displayed
37
static unsigned long segment_step = 0;
104
static unsigned long _segment_step = 0;
39
106
// remainder after divisor and a tally of the remainders for each segment
40
static unsigned long segment_step_sub_step = 0;
41
static unsigned long segment_step_sub = 0;
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
111
static Button _button( 3 );
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
119
// interupt handler's "ignore every other" flag
120
static bool _pulse_ignore = true;
47
122
//_____________________________________________________________________________
51
// ISR to handle the pulses from the fan's tachiometer
52
void fanPulseHandler()
125
// perform button events
126
void do_button_events()
54
// the fan actually sends two pulses per revolution. These pulses
55
// may not be exactly evenly distributed around the rotation, so
56
// we can't recalculate times on every pulse. Instead, we ignore
57
// every other pulse so timings are based on a complete rotation.
58
static bool ignore = true;
128
// loop through pending events
129
while( int event = _button.get_event() )
62
// set a new pulse time
63
new_pulse_at = micros();
135
_modes[ _mode ]->press();
139
_modes[ _mode ]->long_press();
142
// looooong press (change major mode)
143
_modes[ _mode ]->deactivate();
144
if( !_modes[ ++_mode ] ) _mode = 0;
145
_modes[ _mode ]->activate();
148
// switch display upside-down
149
_pulse_ignore = !_pulse_ignore;
68
// draw a particular segment
69
void drawNextSegment( bool reset )
156
// draw a display segment
157
void draw_next_segment( bool reset )
71
static unsigned int segment = 0;
72
if( reset ) segment = 0;
75
for( int a = 0; a < 10; a++ )
76
digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
159
// keep track of segment
160
static int segment = 0;
162
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
164
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
167
// reset the text renderer's buffer
168
TextRenderer::reset_buffer();
172
_modes[ _mode ]->draw_reset();
174
// tell the text services we're starting a new frame
179
_modes[ _mode ]->draw( segment );
182
Text::draw( segment );
184
// draw text rednerer's buffer
185
TextRenderer::output_buffer();
188
if( ++segment >= NUM_SEGMENTS ) segment = 0;
190
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
80
195
// calculate time constants when a new pulse has occurred
81
void calculateSegmentTimes()
196
void calculate_segment_times()
83
198
// check for overflows, and only recalculate times if there isn't
84
199
// one (if there is, we'll just go with the last pulse's times)
85
if( new_pulse_at > last_pulse_at )
200
if( _new_pulse_at > _last_pulse_at )
87
202
// new segment stepping times
88
unsigned long delta = new_pulse_at - last_pulse_at;
89
segment_step = delta / NUM_SEGMENTS;
91
segment_step_sub_step = delta % NUM_SEGMENTS;
203
unsigned long delta = _new_pulse_at - _last_pulse_at;
204
_segment_step = delta / NUM_SEGMENTS;
205
_segment_step_sub = 0;
206
_segment_step_sub_step = delta % NUM_SEGMENTS;
94
209
// now we have dealt with this pulse, save the pulse time and
95
210
// clear new_pulse_at, ready for the next pulse
96
last_pulse_at = new_pulse_at;
211
_last_pulse_at = _new_pulse_at;
101
216
// wait until it is time to draw the next segment or a new pulse has
103
void waitTillNextSegment( bool reset )
218
void wait_till_end_of_segment( bool reset )
105
220
static unsigned long end_time = 0;
109
end_time = last_pulse_at;
224
end_time = _last_pulse_at;
111
226
// work out the time that this segment should be displayed until
112
end_time += segment_step;
113
semgment_step_sub += semgment_step_sub_step;
114
if( semgment_step_sub >= NUM_SEGMENTS ) {
115
semgment_step_sub -= NUM_SEGMENTS;
227
end_time += _segment_step;
228
_segment_step_sub += _segment_step_sub_step;
229
if( _segment_step_sub >= NUM_SEGMENTS ) {
230
_segment_step_sub -= NUM_SEGMENTS;
120
while( micros() < end_time && !new_pulse_at );
235
while( micros() < end_time && !_new_pulse_at );
239
// ISR to handle the pulses from the fan's tachometer
240
void fan_pulse_handler()
242
// the fan actually sends two pulses per revolution. These pulses
243
// may not be exactly evenly distributed around the rotation, so
244
// we can't recalculate times on every pulse. Instead, we ignore
245
// every other pulse so timings are based on a complete rotation.
246
_pulse_ignore = !_pulse_ignore;
249
// set a new pulse time
250
_new_pulse_at = micros();
127
// set up an interrupt handler on pin 2 to nitice fan pulses
128
attachInterrupt( 0, fanPulseHandler, RISING );
258
// set up an interrupt handler on pin 2 to notice fan pulses
259
attachInterrupt( 0, fan_pulse_handler, RISING );
129
260
digitalWrite( 2, HIGH );
131
262
// set up output pins (4 to 13) for the led array
132
263
for( int a = 4; a < 14; a++ )
133
264
pinMode( a, OUTPUT );
136
Serial.begin( 9600 );
266
// set up mode-switch button on pin 3
268
digitalWrite( 3, HIGH );
269
static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
_button.set_event_times( event_times );
275
// init text renderer
276
TextRenderer::init();
282
static SwitcherMajorMode switcher;
283
static SettingsMajorMode settings( _button );
287
_modes[ mode++ ] = &switcher;
288
_modes[ mode++ ] = &settings;
291
// activate the current major mode
292
_modes[ _mode ]->activate();