/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2013-03-31 17:07:36 UTC
  • Revision ID: tim@ed.am-20130331170736-hphm2hg0y6l7w6z1
made rtc-test's DS1307 library a symlink to the main one in src/util

Show diffs side-by-side

added added

removed removed

 
1
/* -*- mode: c++; compile-command: "make"; -*- */
1
2
/*
2
 
 * propeller-clock.pde
 
3
 * propeller-clock.ino
3
4
 *
4
 
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
 
5
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
5
6
 *
6
7
 * This file is part of propeller-clock (hereafter referred to as "this
7
 
 * program"). See http://ed.am/software/arduino/propeller-clock for more
 
8
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
8
9
 * information.
9
10
 *
10
11
 * This program is free software: you can redistribute it and/or modify
27
28
 
28
29
 * a PC fan is wired up to a 12V power supply
29
30
 
30
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
32
33
 
33
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
34
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
35
36
   13 is at the outside.
36
37
 
37
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
38
 
   used to indirectly drive (via a MOSFET) multiple LEDs which turn on
39
 
   and off in unison in the centre of the clock.
 
39
   used to indirectly drive a transistor which in turn drives several
 
40
   LEDs that turn on and off in unison in the centre of the clock.
40
41
 
41
42
 * a button should be attached to pin 3 that grounds it when pressed.
42
43
 
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
45
 
43
46
Implementation details:
44
47
 
45
 
 * for a schematic, see project/propeller-clock.sch.
 
48
 * for a schematic, see ../project/propeller-clock.sch.
46
49
 
47
50
 * the timing of the drawing of the clock face is recalculated with
48
51
   every rotation of the propeller.
49
52
    
50
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
51
54
   software skips every other one. This means that the clock may
52
55
   appear upside-down if started with the propeller in the wrong
53
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
54
57
   the propeller must be in when starting the clock.
55
58
    
56
59
Usage instructions:
67
70
    - pressing the button increments the field currently being set
68
71
    - pressing and holding the button for a second cycles through the
69
72
      fields that can be set
70
 
    - press and holding the button for 5 seconds to finish
 
73
    - pressing and holding the button for 5 seconds sets the time and
 
74
      exits "time set" mode
71
75
 
72
76
******************************************************************************/
73
77
 
74
 
 
75
 
#include <Bounce.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "modes/switcher_major_mode.h"
 
83
#include "modes/settings_major_mode.h"
 
84
#include "modes/analogue_clock_mode.h"
 
85
#include "modes/digital_clock_mode.h"
 
86
#include "modes/info_mode.h"
 
87
#include "modes/test_pattern_mode.h"
 
88
#include "text.h"
 
89
#include "text_renderer.h"
 
90
#include "common.h"
76
91
 
77
92
//_____________________________________________________________________________
78
93
//                                                                         data
79
94
 
80
 
 
81
95
// when non-zero, the time (in microseconds) of a new fan pulse that
82
96
// has just occurred, which means that segment drawing needs to be
83
97
// restarted
84
 
static unsigned long new_pulse_at = 0;
 
98
static unsigned long _new_pulse_at = 0;
85
99
 
86
100
// the time (in microseconds) when the last fan pulse occurred
87
 
static unsigned long last_pulse_at = 0;
 
101
static unsigned long _last_pulse_at = 0;
88
102
 
89
103
// duration (in microseconds) that a segment should be displayed
90
 
static unsigned long segment_step = 0;
 
104
static unsigned long _segment_step = 0;
91
105
 
92
106
// remainder after divisor and a tally of the remainders for each segment
93
 
static unsigned long segment_step_sub_step = 0;
94
 
static unsigned long segment_step_sub = 0;
95
 
 
96
 
// flag to indicate that the drawing mode should be cycled to the next one
97
 
static bool inc_draw_mode = false;
98
 
 
99
 
// a bounce-managed button
100
 
static Bounce button( 3, 5 );
101
 
 
102
 
// the time
103
 
static int time_hours = 0;
104
 
static int time_minutes = 0;
105
 
static int time_seconds = 0;
106
 
 
107
 
// number of segments in a full display (rotation) is 60 (one per
108
 
// second) times the desired number of sub-divisions of a second
109
 
#define NUM_SECOND_SEGMENTS 5
110
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
107
static unsigned long _segment_step_sub_step = 0;
 
108
static unsigned long _segment_step_sub = 0;
 
109
 
 
110
// the button
 
111
static Button _button( 3 );
 
112
 
 
113
// major modes
 
114
static MajorMode *_modes[ 3 ];
 
115
 
 
116
// current major mode
 
117
static int _mode = 0;
 
118
 
 
119
// interupt handler's "ignore every other" flag
 
120
static bool _pulse_ignore = true;
111
121
 
112
122
//_____________________________________________________________________________
113
123
//                                                                         code
114
124
 
115
 
 
116
 
// check for button presses
117
 
void checkButtons()
118
 
{
119
 
        // update buttons
120
 
        button.update();
121
 
 
122
 
        // notice button presses
123
 
        if( button.risingEdge() )
124
 
                inc_draw_mode = true;
125
 
}
126
 
 
127
 
 
128
 
// keep track of time
129
 
void trackTime()
130
 
{
131
 
        // previous time and any carried-over milliseconds
132
 
        static unsigned long last_time = millis();
133
 
        static unsigned long carry = 0;
134
 
 
135
 
        // how many milliseonds have elapsed since we last checked?
136
 
        unsigned long next_time = millis();
137
 
        unsigned long delta = next_time - last_time + carry;
138
 
 
139
 
        // update the previous time and carried-over milliseconds
140
 
        last_time = next_time;
141
 
        carry = delta % 1000;
142
 
 
143
 
        // add the seconds that have passed to the time
144
 
        time_seconds += delta / 1000;
145
 
        while( time_seconds >= 60 ) {
146
 
                time_seconds -= 60;
147
 
                time_minutes++;
148
 
                if( time_minutes >= 60 ) {
149
 
                        time_minutes -= 60;
150
 
                        time_hours++;
151
 
                        if( time_hours >= 24 )
152
 
                                time_hours -= 24;
 
125
// perform button events
 
126
void do_button_events()
 
127
{
 
128
        // loop through pending events
 
129
        while( int event = _button.get_event() )
 
130
        {
 
131
                switch( event )
 
132
                {
 
133
                case 1:
 
134
                        // short press
 
135
                        _modes[ _mode ]->press();
 
136
                        break;
 
137
                case 2:
 
138
                        // long press
 
139
                        _modes[ _mode ]->long_press();
 
140
                        break;
 
141
                case 3:
 
142
                        // looooong press (change major mode)
 
143
                        _modes[ _mode ]->deactivate();
 
144
                        if( !_modes[ ++_mode ] ) _mode = 0;
 
145
                        _modes[ _mode ]->activate();
 
146
                        break;
 
147
                case 4:
 
148
                        // switch display upside-down
 
149
                        _pulse_ignore = !_pulse_ignore;
 
150
                        break;
153
151
                }
154
152
        }
155
153
}
156
154
 
157
155
 
158
 
// draw a segment for the test display
159
 
void drawNextSegment_test( bool reset )
 
156
// draw a display segment
 
157
void draw_next_segment( bool reset )
160
158
{
161
159
        // keep track of segment
162
 
        static unsigned int segment = 0;
163
 
        if( reset ) segment = 0;
164
 
        segment++;
165
 
 
166
 
        // turn on inside and outside LEDs
167
 
        digitalWrite( 4, HIGH );
168
 
        digitalWrite( 13, HIGH );
169
 
 
170
 
        // display segment number in binary across in the inside LEDs,
171
 
        // with the LED on pin 12 showing the least-significant bit
172
 
        for( int a = 0; a < 8; a++ )
173
 
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
174
 
}
175
 
 
176
 
 
177
 
// draw a segment for the time display
178
 
void drawNextSegment_time( bool reset )
179
 
{
180
 
        static unsigned int second = 0;
181
 
        static unsigned int segment = 0;
182
 
 
183
 
        // handle display reset
184
 
        if( reset ) {
185
 
                second = 0;
186
 
                segment = 0;
187
 
        }
188
 
 
189
 
        // what needs to be drawn?
190
 
        bool draw_tick = !segment && second % 5 == 0;
191
 
        bool draw_second = !segment && second == time_seconds;
192
 
        bool draw_minute = !segment && second == time_minute;
193
 
        bool draw_hour = !segment && second == time_hour;
194
 
 
195
 
        // set the LEDs
196
 
        digitalWrite( 13, HIGH );
197
 
        digitalWrite( 12, draw_tick || draw_minute );
198
 
        for( int a = 10; a <= 11; a++ )
199
 
                digitalWrite( a, draw_minute || draw_second );
200
 
        for( int a = 4; a <= 9; a++ )
201
 
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
202
 
 
203
 
        // inc position
204
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
205
 
                segment = 0;
206
 
                second++;
207
 
        }
208
 
}
209
 
 
210
 
 
211
 
// draw a display segment
212
 
void drawNextSegment( bool reset )
213
 
{
214
 
        static int draw_mode = 0;
215
 
 
216
 
        // handle mode switch requests
217
 
        if( reset && inc_draw_mode ) {
218
 
                inc_draw_mode = false;
219
 
                draw_mode++;
220
 
                if( draw_mode >= 2 )
221
 
                        draw_mode = 0;
222
 
        }
223
 
 
224
 
        // draw the segment
225
 
        switch( draw_mode ) {
226
 
        case 0: drawNextSegment_test( reset ); break;
227
 
        case 1: drawNextSegment_time( reset ); break;
228
 
        }
 
160
        static int segment = 0;
 
161
#if CLOCK_FORWARD
 
162
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
163
#else
 
164
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
165
#endif
 
166
 
 
167
        // reset the text renderer's buffer
 
168
        TextRenderer::reset_buffer();
 
169
 
 
170
        if( reset )
 
171
        {
 
172
                _modes[ _mode ]->draw_reset();
 
173
 
 
174
                // tell the text services we're starting a new frame
 
175
                Text::draw_reset();
 
176
        }
 
177
 
 
178
        // draw
 
179
        _modes[ _mode ]->draw( segment );
 
180
 
 
181
        // draw text
 
182
        Text::draw( segment );
 
183
 
 
184
        // draw text rednerer's buffer
 
185
        TextRenderer::output_buffer();
 
186
 
 
187
#if CLOCK_FORWARD
 
188
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
189
#else
 
190
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
191
#endif
229
192
}
230
193
 
231
194
 
232
195
// calculate time constants when a new pulse has occurred
233
 
void calculateSegmentTimes()
 
196
void calculate_segment_times()
234
197
{
235
198
        // check for overflows, and only recalculate times if there isn't
236
199
        // one (if there is, we'll just go with the last pulse's times)
237
 
        if( new_pulse_at > last_pulse_at )
 
200
        if( _new_pulse_at > _last_pulse_at )
238
201
        {
239
202
                // new segment stepping times
240
 
                unsigned long delta = new_pulse_at - last_pulse_at;
241
 
                segment_step = delta / NUM_SEGMENTS;
242
 
                segment_step_sub = 0;
243
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
203
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
204
                _segment_step = delta / NUM_SEGMENTS;
 
205
                _segment_step_sub = 0;
 
206
                _segment_step_sub_step = delta % NUM_SEGMENTS;
244
207
        }
245
208
 
246
209
        // now we have dealt with this pulse, save the pulse time and
247
210
        // clear new_pulse_at, ready for the next pulse
248
 
        last_pulse_at = new_pulse_at;
249
 
        new_pulse_at = 0;
 
211
        _last_pulse_at = _new_pulse_at;
 
212
        _new_pulse_at = 0;
250
213
}
251
214
 
252
215
 
253
216
// wait until it is time to draw the next segment or a new pulse has
254
217
// occurred
255
 
void waitTillNextSegment( bool reset )
 
218
void wait_till_end_of_segment( bool reset )
256
219
{
257
220
        static unsigned long end_time = 0;
258
221
 
259
222
        // handle reset
260
223
        if( reset )
261
 
                end_time = last_pulse_at;
 
224
                end_time = _last_pulse_at;
262
225
 
263
226
        // work out the time that this segment should be displayed until
264
 
        end_time += segment_step;
265
 
        segment_step_sub += segment_step_sub_step;
266
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
267
 
                segment_step_sub -= NUM_SEGMENTS;
 
227
        end_time += _segment_step;
 
228
        _segment_step_sub += _segment_step_sub_step;
 
229
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
230
                _segment_step_sub -= NUM_SEGMENTS;
268
231
                end_time++;
269
232
        }
270
233
 
271
234
        // wait
272
 
        while( micros() < end_time && !new_pulse_at );
 
235
        while( micros() < end_time && !_new_pulse_at );
273
236
}
274
237
 
275
238
 
276
 
// ISR to handle the pulses from the fan's tachiometer
277
 
void fanPulseHandler()
 
239
// ISR to handle the pulses from the fan's tachometer
 
240
void fan_pulse_handler()
278
241
{
279
242
        // the fan actually sends two pulses per revolution. These pulses
280
243
        // may not be exactly evenly distributed around the rotation, so
281
244
        // we can't recalculate times on every pulse. Instead, we ignore
282
245
        // every other pulse so timings are based on a complete rotation.
283
 
        static bool ignore = true;
284
 
        ignore = !ignore;
285
 
        if( !ignore )
 
246
        _pulse_ignore = !_pulse_ignore;
 
247
        if( !_pulse_ignore )
286
248
        {
287
249
                // set a new pulse time
288
 
                new_pulse_at = micros();
 
250
                _new_pulse_at = micros();
289
251
        }
290
252
}
291
253
 
293
255
// main setup
294
256
void setup()
295
257
{
296
 
        // set up an interrupt handler on pin 2 to nitice fan pulses
297
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
258
        // set up an interrupt handler on pin 2 to notice fan pulses
 
259
        attachInterrupt( 0, fan_pulse_handler, RISING );
298
260
        digitalWrite( 2, HIGH );
299
261
  
300
262
        // set up output pins (4 to 13) for the led array
303
265
 
304
266
        // set up mode-switch button on pin 3
305
267
        pinMode( 3, INPUT );
306
 
 
307
 
        // serial comms
308
 
        Serial.begin( 9600 );
 
268
        digitalWrite( 3, HIGH );
 
269
        static int event_times[] = { 10, 500, 2000, 4000, 0 };
 
270
        _button.set_event_times( event_times );
 
271
 
 
272
        // initialise RTC
 
273
        Time::load_time();
 
274
 
 
275
        // init text renderer
 
276
        TextRenderer::init();
 
277
 
 
278
        // reset text
 
279
        Text::reset();
 
280
        leds_off();
 
281
 
 
282
        static SwitcherMajorMode switcher;
 
283
        static SettingsMajorMode settings( _button );
 
284
 
 
285
        // add major modes
 
286
        int mode = 0;
 
287
        _modes[ mode++ ] = &switcher;
 
288
        _modes[ mode++ ] = &settings;
 
289
        _modes[ mode ] = 0;
 
290
 
 
291
        // activate the current major mode
 
292
        _modes[ _mode ]->activate();
309
293
}
310
294
 
311
295
 
313
297
void loop()
314
298
{
315
299
        // if there has been a new pulse, we'll be resetting the display
316
 
        bool reset = new_pulse_at? true : false;
 
300
        bool reset = _new_pulse_at? true : false;
 
301
 
 
302
        // update button
 
303
        _button.update();
317
304
 
318
305
        // only do this stuff at the start of a display cycle, to ensure
319
306
        // that no state changes mid-display
320
307
        if( reset )
321
308
        {
322
 
                // check buttons
323
 
                checkButtons();
 
309
                // calculate segment times
 
310
                calculate_segment_times();
324
311
 
325
312
                // keep track of time
326
 
                trackTime();
 
313
                Time::update();
 
314
 
 
315
                // perform button events
 
316
                do_button_events();
327
317
        }
328
318
 
329
319
        // draw this segment
330
 
        drawNextSegment( reset );
331
 
 
332
 
        // do we need to recalculate segment times?
333
 
        if( reset )
334
 
                calculateSegmentTimes();
 
320
        draw_next_segment( reset );
335
321
 
336
322
        // wait till it's time to draw the next segment
337
 
        waitTillNextSegment( reset );
 
323
        wait_till_end_of_segment( reset );
338
324
}