/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*	Copyright (C) 2007 Garrett A. Kajmowicz
	This file is part of the uClibc++ Library.

	This library is free software; you can redistribute it and/or
	modify it under the terms of the GNU Lesser General Public
	License as published by the Free Software Foundation; either
	version 2.1 of the License, or (at your option) any later version.

	This library is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
	Lesser General Public License for more details.

	You should have received a copy of the GNU Lesser General Public
	License along with this library; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/



#include<memory>
#include<utility.h>
#include<iterator>
#include<functional>
#include<list>


#ifndef __STD_HEADER_ASSOCIATIVE_BASE
#define __STD_HEADER_ASSOCIATIVE_BASE

#pragma GCC visibility push(default)

namespace std{


/*
 *	The basic premise here is that most of the code used by map, multimap, set and
 *	multiset is really common.  There are a number of interface additions, and
 *	considerations about how to address multiple entries with the same key.
 *	The goal is that the tree/storage code should be here, and managing
 *	single or multiple counts will be left to subclasses.
 *	Yes, inheritence for the purpose of code sharing is usually a bad idea.
 *	However, since our goal is to reduce the total amount of code written
 *	and the overall binary size, this seems to be the best approach possible.
 */

template<class Key, class ValueType, class Compare = less<Key>, class Allocator = allocator<ValueType> > class __base_associative;
template<class ValueType, class Compare, class Allocator> class _associative_iter;
template<class ValueType, class Compare, class Allocator> class _associative_citer;

template<class Key, class ValueType, class Compare = less<Key>, class Allocator = allocator<ValueType> > class __single_associative;
template<class Key, class ValueType, class Compare = less<Key>, class Allocator = allocator<ValueType> > class __multi_associative;

template<class Key, class ValueType, class Compare, class Allocator> class _UCXXEXPORT __base_associative{

protected:

public:
	typedef Key							key_type;
	typedef ValueType						value_type;
	typedef Compare							key_compare;
	typedef Allocator						allocator_type;
	typedef typename Allocator::reference				reference;
	typedef typename Allocator::const_reference			const_reference;
	typedef typename Allocator::size_type				size_type;
	typedef typename Allocator::difference_type			difference_type;
	typedef typename Allocator::pointer				pointer;
	typedef typename Allocator::const_pointer			const_pointer;
	typedef __base_associative<Key, ValueType, Compare, Allocator>	associative_type;

	typedef _associative_iter<value_type, Compare, Allocator>	iterator;
	typedef _associative_citer<value_type, Compare, Allocator>	const_iterator;
	typedef typename std::reverse_iterator<iterator>		reverse_iterator;
	typedef typename std::reverse_iterator<const_iterator>		const_reverse_iterator;


	explicit __base_associative(const Compare& comp, const Allocator& A, const key_type (*v_to_k)(const value_type))
		: c(comp), value_to_key(v_to_k) { }
protected:
	__base_associative(const associative_type& x)
		: c(x.c), backing(x.backing), value_to_key(x.value_to_key) { }

public:
	~__base_associative(){
	}

	bool empty() const{
		return backing.empty();
	}
	size_type size() const{
		return backing.size();
	}
	size_type max_size() const{
		return backing.max_size();
	}

	iterator begin(){
		return iterator(backing.begin());
	}

	const_iterator begin() const{
		return const_iterator(backing.begin());
	}

	iterator end() {
		return iterator(backing.end());
	}

	const_iterator end() const{
		return const_iterator(backing.end());
	}

	reverse_iterator rbegin(){
		return reverse_iterator(end());
	}

	const_reverse_iterator rbegin() const{
		return const_reverse_iterator(end());
	}

	reverse_iterator rend(){
		return reverse_iterator(begin());
	}

	const_reverse_iterator rend() const{
		return const_reverse_iterator(begin());
	}


	iterator lower_bound(const key_type &x);
	const_iterator lower_bound(const key_type &x) const;
	iterator upper_bound(const key_type &x);
	const_iterator upper_bound(const key_type &x) const;

	pair<iterator,iterator> equal_range(const key_type& x){
		pair<iterator, iterator> retval;
		retval.first = lower_bound(x);
		retval.second = retval.first;
		while(retval.second != end() && !c(x, value_to_key(*retval.second))){
			++retval.second;
		}
		return retval;
	}
	pair<const_iterator,const_iterator> equal_range(const key_type& x) const{
		pair<const_iterator, const_iterator> retval;
		retval.first = lower_bound(x);
		retval.second = retval.first;
		while(retval.second != end() && !c(x, value_to_key(*retval.second))){
			++retval.second;
		}
		return retval;
	}

	iterator find(const key_type& x){
		iterator retval = lower_bound(x);
		if(retval == end()){
			return retval;
		}
		if(c(x, value_to_key(*retval))){
			return end();
		}
		return retval;
	}
        const_iterator find(const key_type& x) const{
		const_iterator retval = lower_bound(x);
		if(retval == end()){
			return retval;
		}
		if(c(x, value_to_key(*retval))){
			return end();
		}
		return retval;
	}
        size_type count(const key_type& x) const{
		size_type retval(0);
		const_iterator first = lower_bound(x);
		while(first != end() && !c(x, value_to_key(*first))){
			++retval;
			++first;
		}
		return retval;
	}

	void clear(){
		backing.clear();
	}

	void erase(iterator pos){
		backing.erase(pos.base_iterator());
	}
        size_type erase(const key_type& x){
		size_type count(0);
		iterator start = lower_bound(x);
		iterator end = upper_bound(x);
		while(start != end){
			start = backing.erase(start.base_iterator());
			++count;
		}
		return count;
	}
        void erase(iterator first, iterator last){
		while(first != last){
			backing.erase(first.base_iterator());
			++first;
		}
	}

	key_compare key_comp() const{
		return c;
	}

	__base_associative &operator=(const __base_associative & x){
		c = x.c;
		backing = x.backing;
		value_to_key = x.value_to_key;
		return *this;
	}
	bool operator==(const __base_associative & x){
		return x.backing == backing;
	}
	bool operator!=(const __base_associative & x){
		return !(x.backing == backing);
	}

protected:
	void swap(__base_associative & x);

	Compare c;
	std::list<value_type> backing;

	const key_type (*value_to_key)(const value_type);

};


/*
 * Tree iterators for the base associative class
 */

template<class ValueType, class Compare, class Allocator> class _associative_citer
	: public std::iterator<
		bidirectional_iterator_tag,
		ValueType,
		typename Allocator::difference_type,
		ValueType*,
		ValueType&
	>
{
protected:
	typedef std::list<ValueType> listtype;

	typename listtype::const_iterator base_iter;
	friend class _associative_iter<ValueType, Compare, Allocator>;
public:
	_associative_citer() { }
	_associative_citer(const _associative_citer & m)
		: base_iter(m.base_iter) { }
	_associative_citer(const typename listtype::const_iterator & m)
		: base_iter(m) { }
	~_associative_citer() { }
	ValueType operator*() const{
		return *base_iter;
	}
	const ValueType * operator->() const{
		return &(*base_iter);
	}
	_associative_citer & operator=(const _associative_citer & m){
		base_iter = m.base_iter;
		return *this;
	}
	bool operator==(const _associative_citer & m) const{
		return m.base_iter == base_iter;
	}
	bool operator!=(const _associative_citer & m) const{
		return m.base_iter != base_iter;
	}
	_associative_citer & operator++(){
		++base_iter;
		return *this;
	}
	_associative_citer operator++(int){
		//The following approach ensures that we only need to
		//provide code for ++ in one place (above)
		_associative_citer temp(base_iter);
		++base_iter;
		return temp;
	}
	_associative_citer & operator--(){
		--base_iter;
		return *this;
	}
	_associative_citer operator--(int){
		//The following approach ensures that we only need to
		//provide code for -- in one place (above)
		_associative_citer temp(base_iter);
		--base_iter;
		return temp;
	}

	//This is an implementation-defined function designed to make internals work correctly
	typename listtype::const_iterator base_iterator(){
		return base_iter;
	}
};


template<class ValueType, class Compare, class Allocator> class _associative_iter
	: public std::iterator<
		bidirectional_iterator_tag,
		ValueType,
		typename Allocator::difference_type,
		ValueType*,
		ValueType&
	>
{
protected:
	typedef std::list<ValueType> listtype;

	typename listtype::iterator base_iter;
	typedef _associative_citer<ValueType, Compare, Allocator> __associative_citer;

public:
	_associative_iter() { }
	_associative_iter(const _associative_iter & m)
		: base_iter(m.base_iter) { }
	_associative_iter(const typename listtype::iterator & m)
		: base_iter(m) { }
	~_associative_iter() { }
	const ValueType & operator*() const{
		return *base_iter;
	}
	ValueType & operator*(){
		return *base_iter;
	}
	ValueType * operator->(){
		return &(*base_iter);
	}
	const ValueType * operator->() const{
		return &(*base_iter);
	}
	_associative_iter & operator=(const _associative_iter & m){
		base_iter = m.base_iter;
		return *this;
	}
	bool operator==(const _associative_iter & m) const{
		return m.base_iter == base_iter;
	}
	bool operator==(const __associative_citer & m) const{
		return m.base_iter == base_iter;
	}
	bool operator!=(const _associative_iter & m) const{
		return m.base_iter != base_iter;
	}
	bool operator!=(const __associative_citer & m) const{
		return m.base_iter != base_iter;
	}
	_associative_iter & operator++(){
		++base_iter;
		return *this;
	}
	_associative_iter operator++(int){
		//The following approach ensures that we only need to
		//provide code for ++ in one place (above)
		_associative_iter temp(base_iter);
		++base_iter;
		return temp;
	}
	_associative_iter & operator--(){
		--base_iter;
		return *this;
	}
	_associative_iter operator--(int){
		//The following approach ensures that we only need to
		//provide code for -- in one place (above)
		_associative_iter temp(base_iter);
		--base_iter;
		return temp;
	}
	operator __associative_citer() const{
		return __associative_citer(base_iter);
	}
	typename listtype::iterator base_iterator(){
		return base_iter;
	}
	const typename listtype::iterator base_iterator() const{
		return base_iter;
	}

};


	// The lower_bound code is really crappy linear search.  However, it is a dead
	// simple implementation (easy to audit).  It can also be easily replaced.


	template <class Key, class ValueType, class Compare, class Allocator>
		typename __base_associative<Key, ValueType, Compare, Allocator>::iterator
		__base_associative<Key, ValueType, Compare, Allocator>::lower_bound(const key_type &x)
	{
		iterator retval = begin();
		while(retval != end() && c(value_to_key(*retval), x)){
			++retval;
		}
		return retval;
	}

	template <class Key, class ValueType, class Compare, class Allocator>
		typename __base_associative<Key, ValueType, Compare, Allocator>::const_iterator
		__base_associative<Key, ValueType, Compare, Allocator>::lower_bound(const key_type &x) const
	{
		const_iterator retval = begin();
		while(retval != end() && c(value_to_key(*retval), x)){
			++retval;
		}
		return retval;
	}

	// Upper bound search is linear from the point of lower_bound.  This is likely the best solution
	// in all but the most pathological of cases.

	template <class Key, class ValueType, class Compare, class Allocator>
		typename __base_associative<Key, ValueType, Compare, Allocator>::iterator
		__base_associative<Key, ValueType, Compare, Allocator>::upper_bound(const key_type &x)
	{
		iterator retval = lower_bound(x);
		while(retval != end() && !c(x, value_to_key(*retval))){
			++retval;
		}
		return retval;
	}

	template <class Key, class ValueType, class Compare, class Allocator>
		typename __base_associative<Key, ValueType, Compare, Allocator>::const_iterator
		__base_associative<Key, ValueType, Compare, Allocator>::upper_bound(const key_type &x) const
	{
		const_iterator retval = begin();
		while(retval != end() && !c(x, value_to_key(*retval))){
			++retval;
		}
		return retval;
	}


	template <class Key, class ValueType, class Compare, class Allocator>
		void __base_associative<Key, ValueType, Compare, Allocator>::swap(__base_associative<Key, ValueType, Compare, Allocator>& m)
	{
		Compare n = c;
		c = m.c;
		m.c = n;

		m.backing.swap(backing);
	}


template<class Key, class ValueType, class Compare, class Allocator> class _UCXXEXPORT __single_associative :
	public __base_associative<Key, ValueType, Compare, Allocator>
{
protected:
	typedef __base_associative<Key, ValueType, Compare, Allocator> base;
	using base::backing;

	using base::c;

public:
	typedef typename base::key_type                         key_type;
	typedef typename base::value_type                       value_type;
	typedef typename base::key_compare                      key_compare;
	typedef typename base::allocator_type                   allocator_type;
	typedef typename base::reference                        reference;
	typedef typename base::const_reference                  const_reference;
	typedef typename base::iterator                         iterator;
	typedef typename base::const_iterator                   const_iterator;
	typedef typename base::size_type                        size_type;
	typedef typename base::difference_type                  difference_type;
	typedef typename base::pointer                          pointer;
	typedef typename base::const_pointer                    const_pointer;
	typedef typename base::reverse_iterator                 reverse_iterator;
	typedef typename base::const_reverse_iterator           const_reverse_iterator;

	using base::begin;
	using base::end;
	using base::rbegin;
	using base::rend;

	using base::empty;
	using base::size;
	using base::max_size;

	using base::find;
	using base::count;
	using base::lower_bound;
	using base::upper_bound;
	using base::equal_range;

	using base::operator=;
	using base::operator==;
	using base::operator!=;

	explicit __single_associative(const Compare& comp, const Allocator& A, const key_type (*v_to_k)(const value_type))
		: base(comp, A, v_to_k) { }

	template <class InputIterator> __single_associative(
		InputIterator first,
		InputIterator last,
		const Compare& comp,
		const Allocator& A,
		const key_type (*v_to_k)(const value_type)
	) : base(comp, A, v_to_k) {
		insert(first, last);
	}

	pair<iterator, bool> insert(const value_type& x){
		pair<iterator, bool> retval;
		iterator location = lower_bound(value_to_key(x));
		retval.second = true;
		//Empty list or need to insert at end
		if(end() == location){
			backing.push_back(x);
			retval.first = --(end());
			return retval;
		}
		//Something in the list
		if(c(value_to_key(x), value_to_key(*location))){
			location = backing.insert(location.base_iterator(), x);
			retval.first = location;
		}else{
			retval.second = false;
			retval.first = location;
		}
		return retval;
	}

	iterator insert(iterator position, const value_type& x){
		// FIXME - this is cheating and probably should be more efficient since we are
		// now log(n) to find for inserts
		return insert(x).first;
	}

	template <class InputIterator> void insert(InputIterator first, InputIterator last){
		while(first != last){
			insert(*first);
			++first;
		}
	}

};


template<class Key, class ValueType, class Compare, class Allocator> class _UCXXEXPORT __multi_associative :
	public __base_associative<Key, ValueType, Compare, Allocator>
{
protected:
	typedef __base_associative<Key, ValueType, Compare, Allocator> base;
	using base::backing;

	using base::c;

public:
	typedef typename base::key_type                         key_type;
	typedef typename base::value_type                       value_type;
	typedef typename base::key_compare                      key_compare;
	typedef typename base::allocator_type                   allocator_type;
	typedef typename base::reference                        reference;
	typedef typename base::const_reference                  const_reference;
	typedef typename base::iterator                         iterator;
	typedef typename base::const_iterator                   const_iterator;
	typedef typename base::size_type                        size_type;
	typedef typename base::difference_type                  difference_type;
	typedef typename base::pointer                          pointer;
	typedef typename base::const_pointer                    const_pointer;
	typedef typename base::reverse_iterator                 reverse_iterator;
	typedef typename base::const_reverse_iterator           const_reverse_iterator;

	using base::begin;
	using base::end;
	using base::rbegin;
	using base::rend;

	using base::empty;
	using base::size;
	using base::max_size;

	using base::find;
	using base::count;
	using base::lower_bound;
	using base::upper_bound;
	using base::equal_range;

	using base::operator=;
	using base::operator==;


	explicit __multi_associative(const Compare& comp, const Allocator& A, const key_type (*v_to_k)(const value_type))
		: base(comp, A, v_to_k) { }

	template <class InputIterator> __multi_associative(
		InputIterator first,
		InputIterator last,
		const Compare& comp,
		const Allocator& A,
		const key_type (*v_to_k)(const value_type)
	) : base(comp, A, v_to_k) {
		insert(first, last);
	}

	iterator insert(const value_type& x){
		iterator location = lower_bound(value_to_key(x));

		if(location == begin()){
			backing.push_front(x);
			location = begin();
		}else{
			location = backing.insert(location.base_iterator(), x);
		}
		return location;
	}

	iterator insert(iterator position, const value_type& x){
		// FIXME - this is cheating and probably should be more efficient since we are
		// now log(n) to find for inserts
		return insert(x);
	}

	template <class InputIterator> void insert(InputIterator first, InputIterator last){
		while(first != last){
			insert(*first);
			++first;
		}
	}
};




}

#pragma GCC visibility pop

#endif	//__STD_HEADER_ASSOCIATIVE_BASE