/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*	Copyright (C) 2004 Garrett A. Kajmowicz
	This file is part of the uClibc++ Library.
	This library is free software; you can redistribute it and/or
	modify it under the terms of the GNU Lesser General Public
	License as published by the Free Software Foundation; either
	version 2.1 of the License, or (at your option) any later version.

	This library is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
	Lesser General Public License for more details.

	You should have received a copy of the GNU Lesser General Public
	License along with this library; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/


#ifndef __STD_HEADER_FUNCTIONAL
#define __STD_HEADER_FUNCTIONAL 1

#include <basic_definitions>

#pragma GCC visibility push(default)

namespace std{

	template <class Arg, class Result> struct unary_function;
	template <class Arg1, class Arg2, class Result> struct binary_function;

	template <class T> struct plus;
	template <class T> struct minus;
	template <class T> struct multiplies;
	template <class T> struct divides;
	template <class T> struct modulus;
	template <class T> struct negate;

	template <class T> struct equal_to;
	template <class T> struct not_equal_to;
	template <class T> struct greater;
	template <class T> struct less;
	template <class T> struct greater_equal;
	template <class T> struct less_equal;

	template <class T> struct logical_and;
	template <class T> struct logical_or;
	template <class T> struct logical_not;

	template <class Predicate> struct unary_negate;
	template <class Predicate> unary_negate<Predicate>  not1(const Predicate&);
	template <class Predicate> struct binary_negate;
	template <class Predicate> binary_negate<Predicate> not2(const Predicate&);


	template <class Operation> class binder1st;
	template <class Operation, class T> binder1st<Operation> bind1st(const Operation&, const T&);
	template <class Operation> class binder2nd;
	template <class Operation, class T> binder2nd<Operation> bind2nd(const Operation&, const T&);

	template <class Arg, class Result> class pointer_to_unary_function;
	template <class Arg, class Result> pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
	template <class Arg1, class Arg2, class Result> class pointer_to_binary_function;
	template <class Arg1, class Arg2, class Result> 
		pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*)(Arg1,Arg2));

	template<class S, class T> class mem_fun_t;
	template<class S, class T, class A> class mem_fun1_t;
	template<class S, class T> class const_mem_fun_t;
	template<class S, class T, class A> class const_mem_fun1_t;
	template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)());
	template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
	template<class S, class T> class mem_fun_ref_t;
	template<class S, class T, class A> class mem_fun1_ref_t;
	template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
	template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A));

	//Implementation

	template <class Arg, class Result> struct _UCXXEXPORT unary_function{
		typedef Arg argument_type;
		typedef Result result_type;
	};


	template <class Arg1, class Arg2, class Result> struct _UCXXEXPORT binary_function{
		typedef Arg1   first_argument_type;
		typedef Arg2   second_argument_type;
		typedef Result result_type;
	};

	template <class T> struct _UCXXEXPORT plus : binary_function<T,T,T>{
		T operator()(const T& x, const T& y) const{
			return x + y;
		}
	};

	template <class T> struct _UCXXEXPORT minus : binary_function<T,T,T>{
		T operator()(const T& x, const T& y) const{
			return x - y;
		}
	};

	template <class T> struct _UCXXEXPORT multiplies : binary_function<T,T,T>{
		T operator()(const T& x, const T& y) const{
			return x * y;
		}
	};

	template <class T> struct _UCXXEXPORT divides : binary_function<T,T,T>{
		T operator()(const T& x, const T& y) const{
			return x / y;
		}
	};

	template <class T> struct _UCXXEXPORT modulus : binary_function<T,T,T>{
		T operator()(const T& x, const T& y) const{
			return x % y;
		}
	};

	template <class T> struct _UCXXEXPORT negate : unary_function<T,T>{
		T operator()(const T& x) const{
			return -x;
		}
	};

	template <class T> struct _UCXXEXPORT equal_to : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x == y);
		}
	};

	template <class T> struct _UCXXEXPORT not_equal_to : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x != y);
		}
	};

	template <class T> struct _UCXXEXPORT greater : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x > y);
		}
	};

	template <class T> struct _UCXXEXPORT less : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x < y);
		}
	};

	template <class T> struct _UCXXEXPORT greater_equal : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x >= y);
		}
	};

	template <class T> struct _UCXXEXPORT less_equal : binary_function<T,T,bool>{
		bool operator()(const T& x, const T& y) const{
			return (x <= y);
		}
	};

	template <class T> struct _UCXXEXPORT logical_and : binary_function<T,T,bool> {
		bool operator()(const T& x, const T& y) const{
			return (x && y);
		}
	};
	
	template <class T> struct _UCXXEXPORT logical_or : binary_function<T,T,bool> {
		bool operator()(const T& x, const T& y) const{
			return (x || y);
		}
	};

	template <class T> struct _UCXXEXPORT logical_not : unary_function<T,bool> {
		bool operator()(const T& x) const{
			return !x;
		}
	};

	template <class Predicate> class _UCXXEXPORT unary_negate
		: public unary_function<typename Predicate::argument_type,bool>
	{
	public:
		explicit unary_negate(const Predicate& pred) : p(pred) {  }
		bool operator()(const typename Predicate::argument_type& x) const{
			return !p(x);
		}
	private:
		Predicate p;
	};


	template <class Predicate> _UCXXEXPORT unary_negate<Predicate> not1(const Predicate& pred){
		return unary_negate<Predicate>(pred);
	}


	template <class Predicate> class _UCXXEXPORT binary_negate : public
		binary_function<typename Predicate::first_argument_type,
			typename Predicate::second_argument_type, bool>
	{
	public:
		explicit binary_negate(const Predicate& pred) : p(pred) {  }
		bool operator()(const typename Predicate::first_argument_type& x,
			const typename Predicate::second_argument_type& y) const
		{
			return !p(x, y);
		}
	private:
		Predicate p;
	};


	template <class Predicate> _UCXXEXPORT binary_negate<Predicate> not2(const Predicate& pred){
		return binary_negate<Predicate>(pred);
	}


	template <class Operation> class _UCXXEXPORT binder1st
		: public unary_function<typename Operation::second_argument_type, 
			typename Operation::result_type>
	{
	protected:
		Operation                      op;
		typename Operation::first_argument_type value;
	public:
		binder1st(const Operation& x, const typename Operation::first_argument_type& y) : op(x), value(y){  }
		typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const{
			return op(value,x);
		}
	};

	
	template <class Operation, class T> _UCXXEXPORT binder1st<Operation> bind1st(const Operation& op, const T& x){
		return binder1st<Operation>(op, typename Operation::first_argument_type(x));
	}


	template <class Operation> class _UCXXEXPORT binder2nd
		: public unary_function<typename Operation::first_argument_type,
			typename Operation::result_type>
	{
	protected:
		Operation                       op;
		typename Operation::second_argument_type value;
	public:
		binder2nd(const Operation& x, const typename Operation::second_argument_type& y) : op(x), value(y) {  }
		typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const{
			return op(x,value);
		}
	};

	
	template <class Operation, class T> _UCXXEXPORT 
		binder2nd<Operation> bind2nd(const Operation& op, const T& x)
	{
		return binder2nd<Operation>(op, typename Operation::second_argument_type(x));
	}
	

	template <class Arg, class Result> class _UCXXEXPORT 
		pointer_to_unary_function : public unary_function<Arg, Result>
	{
	protected:
		Result (*func)(Arg);
	public:
		explicit pointer_to_unary_function(Result (*f)(Arg)) : func(f) {  }
		Result operator()(Arg x) const{
			return func(x);
		}
	};

	
	template <class Arg, class Result> _UCXXEXPORT pointer_to_unary_function<Arg, Result> ptr_fun(Result (*f)(Arg)){
		return pointer_to_unary_function<Arg, Result>(f);
	}

	
	template <class Arg1, class Arg2, class Result>	class _UCXXEXPORT 
		pointer_to_binary_function : public binary_function<Arg1,Arg2,Result>
	{
	protected:
		Result (*func)(Arg1, Arg2);
	public:
		explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2)) : func(f) {  }
		Result operator()(Arg1 x, Arg2 y) const{
			return func(x, y);
		}
	};

	template <class Arg1, class Arg2, class Result> _UCXXEXPORT 
		pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1, Arg2))
	{
		return pointer_to_binary_function<Arg1,Arg2,Result>(f);
	}

	
	template <class S, class T> class _UCXXEXPORT mem_fun_t
		: public unary_function<T*, S>
	{
	public:
		explicit mem_fun_t(S (T::*p)()) : m(p) {  }
		S operator()(T* p) const { return (p->*m)(); }
	private:
		S (T::*m)();
	};


	template <class S, class T, class A> class _UCXXEXPORT mem_fun1_t
		: public binary_function<T*, A, S>
	{
	public:
		explicit mem_fun1_t(S (T::*p)(A)) : m(p) {  }
		S operator()(T* p, A x) const { return (p->*m)(x); }
	private:
		S (T::*m)(A);
	};


	template <class S, class T> class _UCXXEXPORT const_mem_fun_t
		: public unary_function<const T*, S>
	{
	public:
		explicit const_mem_fun_t(S (T::*p)() const) : m(p) {  }
		S operator()(const T* p) const { return (p->*m)(); }
	private:
		S (T::*m)() const;
	};


	template <class S, class T, class A> class _UCXXEXPORT const_mem_fun1_t
		: public binary_function<T*, A, S>
	{
	public:
		explicit const_mem_fun1_t(S (T::*p)(A) const) : m(p) {  }
		S operator()(const T* p, A x) const { return (p->*m)(x); }
	private:
		S (T::*m)(A) const;
	};


	template<class S, class T> _UCXXEXPORT mem_fun_t<S,T> mem_fun(S (T::*f)()){
		return mem_fun_t<S, T>(f);
	}

	template<class S, class T> _UCXXEXPORT const_mem_fun_t<S,T> mem_fun(S (T::*f)() const){
		return const_mem_fun_t<S, T>(f);
	}

	template<class S, class T, class A> _UCXXEXPORT mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A)){
		return mem_fun1_t<S, T, A>(f);
	}

	template<class S, class T, class A> _UCXXEXPORT const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const){
		return const_mem_fun1_t<S, T, A>(f);
	}

	template <class S, class T> class _UCXXEXPORT mem_fun_ref_t
		: public unary_function<T, S>
	{
	public:
		explicit mem_fun_ref_t(S (T::*p)()) : mf(p) {  }
		S operator()(T& p) { return (p.*mf)(); } 
	private:
		S (T::*mf)();
	};
	
	template <class S, class T, class A> class _UCXXEXPORT mem_fun1_ref_t
		: public binary_function<T, A, S>
	{
	public:
		explicit mem_fun1_ref_t(S (T::*p)(A)) : mf(p) {  }
		S operator()(T& p, A x) { return (p.*mf)(x); }
	private:
		S (T::*mf)(A);
	};

	template<class S, class T> _UCXXEXPORT mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()){
		return mem_fun_ref_t<S,T>(f);
	}

	template<class S, class T, class A> _UCXXEXPORT mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A)){
		return mem_fun1_ref_t<S,T,A>(f);
	}


}


//These are SGI extensions which are checked for by some conformance checks.  They
// are *NOT* part of the C++ standard, however

template <class Op1, class Op2> class _UCXXEXPORT unary_compose :
	public std::unary_function<typename Op2::argument_type,
		typename Op1::result_type>
{
protected:
	Op1 mf1;
	Op2 mf2;
public:
	unary_compose(const Op1& x, const Op2& y) : mf1(x), mf2(y) {  }
	typename Op1::result_type operator()(const typename Op2::argument_type& x) const {
		return mf1(mf2(x));
	}
};

template <class Op1, class Op2> _UCXXEXPORT 
inline unary_compose<Op1, Op2>
compose1(const Op1& fn1, const Op2& fn2){
	return unary_compose<Op1, Op2>(fn1, fn2);
}

template <class Op1, class Op2, class Op3> class _UCXXEXPORT binary_compose : 
	public std::unary_function<typename Op2::argument_type, typename Op1::result_type>
{
protected:
	Op1 mf1;
	Op2 mf2;
	Op3 mf3;
public:
	binary_compose(const Op1 & x, const Op2 & y, const Op3 & z)
		: mf1(x), mf2(y), mf3(z){  }
	typename Op1::result_type operator()(const typename Op2::argument_type & x) const {
		return mf1(mf2(x), mf3(x));
	}
};

template <class Op1, class Op2, class Op3> inline _UCXXEXPORT binary_compose<Op1, Op2, Op3>
compose2(const Op1 & fn1, const Op2 & fn2, const Op3 & fn3){
	return binary_compose<Op1, Op2, Op3>(fn1, fn2, fn3);
}

#pragma GCC visibility pop

#endif