/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to electronics-information

  • Committer: edam
  • Date: 2011-11-04 13:48:15 UTC
  • Revision ID: edam@waxworlds.org-20111104134815-kj7qdhqfbxaj1tng
finished writing up electronics notes

Show diffs side-by-side

added added

removed removed

1
1
Why can't I use a potentiometer to get a different voltage?
2
2
===========================================================
3
3
 
4
 
Suppose that you have 12V and you need 6V. Why can't you use an
 
4
Suppose that you have 12V and you need 6V.  Why can't you use an
5
5
arrangement like this to get your 6Vs?
6
6
 
7
7
    +12V -------+---------
8
8
                |
9
 
                [] R
 
9
               |¯|
 
10
               |_| R
10
11
                |
11
12
                +--------o  6V, yes?
12
13
                |
13
 
                [] R
 
14
               |¯|
 
15
               |_| R
14
16
                |
15
 
      0V -------+---------
 
17
     GND -------+---------
16
18
 
17
 
You *do* get 6V, but it isn't actually practical to do this. The
 
19
You *do* get 6V, but it isn't actually practical to do this.  The
18
20
problem is that, when R is suitably high, you've limited the current
19
 
so much that it isn't really useful.
 
21
at the 6V pin so much that it isn't really useful.
20
22
 
21
23
And when R is suitably low, there isn't enough resistance between the
22
 
+12V and 0V rails to prevent a lot of current flowing. Lets work this
23
 
out (lets suppose that R is 1 ohm).
 
24
+12V and GND rails to prevent a lot of current flowing.  Lets work
 
25
this out (lets suppose that R is 1 ohm).
24
26
 
25
27
        V = IR, therefor I = V/R
26
 
        P = VI = V(V/R) = RV^2 = 1 * 12 ^ 2 = 144W
 
28
        P = VI = V(V/R) = (V^2)/R = ( 12 ^ 2 ) / 1 = 144W
27
29
        P = VI, therefor I = P/V = 144/12 = 12A
28
30
 
29
31
That's a lot of current and a lot of power, flowing continuously, just
33
35
actually change the ratio of the potentiometer, so you wouldn't get 6V
34
36
anyway.
35
37
 
36
 
The solution is to use a voltage regulator. The 7805 will give out 5V
37
 
(so long as you can supply it with at least 7V). But the arduinos
38
 
already have something similar on-board and so can take an input
 
38
The solution is to use a voltage regulator.  The 7805 will give out 5V
 
39
(so long as you can supply it with at least 7V).  But the arduinos
 
40
already have something similar on-board and they can take an input
39
41
voltage in the range 6-20V (although 7-12V is recommended).
40
42
 
 
43
 
 
44
Wiring up multiple LEDs in series to a single arduino pin
 
45
=========================================================
 
46
 
 
47
First, lets think about a single LED.
 
48
 
 
49
             |
 
50
    Arduino  |     ___      ,,
 
51
            o-----|___|-----►|---- GND
 
52
             |      R       D
 
53
             |
 
54
 
 
55
The arduino pin, when raised high, is at 5V and no more than 20mA can
 
56
be taken from it.  The LED will take about 10mA and wants about 1.5V.
 
57
 
 
58
You can think of this as a potentiometer arrangement, with the
 
59
resistance of R and D proportionally splitting the voltage between the
 
60
two components.  We want 1.5V across the LED, so we need 3.5V (that's
 
61
5 - 1.5) across the resistor.  Now, we don't know the resistance of
 
62
the LED, but we don't need to.  If we know that we want 10mA through
 
63
the whole series (the resistor and the diode), then we can use V=IR as
 
64
follows...
 
65
 
 
66
    V=IR, therefore R=V/I
 
67
    R = 3.5 / .01 = 350Ω
 
68
 
 
69
Which is why the standard resistor you'd use with one LED is orange,
 
70
orange, brown (actually, 340 ohms).
 
71
 
 
72
Now lets consider more than one LED in series.
 
73
 
 
74
             |
 
75
    Arduino  |     ___      ,,     ,,
 
76
            o-----|___|-----►|-----►|---- GND
 
77
             |      R       D1     D2
 
78
             |
 
79
 
 
80
Ok, so now you still need 10mA through the whole series, but you want
 
81
1.5V across the first diode and 1.5V across the second as well.  That
 
82
leaves 2V across R, the resistor (5 - 1.5 - 1.5).
 
83
 
 
84
    R = V/I = 2 / .01 = 200Ω
 
85
 
 
86
You can see that beyond three or perhaps, at a push, four LEDs you're
 
87
not going to get the required 1.5V across each LED. So three (or four)
 
88
is the limit to how many LEDs you can drive in series from one pin on
 
89
the arduino.
 
90
 
 
91
 
 
92
Wiring up multiple LEDs in parallel to a single arduino pin
 
93
===================================--======================
 
94
 
 
95
Image we have
 
96
 
 
97
             |
 
98
    Arduino  |     ___        ,,
 
99
            o-----|___|---+---►|---.
 
100
             |      R     |   D1   |
 
101
             |            |        |
 
102
             |            |   ,,   |
 
103
             |            '---►|---+--- GND
 
104
             |                D2
 
105
 
 
106
This wouldn't work. We can't use one resistor in series with the two
 
107
LEDs because the resistance of the two LEDs wont actually be exactly
 
108
the same.  You'll end up running one brighter than the other and burn
 
109
one out quicker.
 
110
 
 
111
So, imagine we have this instead
 
112
 
 
113
             |
 
114
    Arduino  |        ___        ,,
 
115
            o----+---|___|----►|---.
 
116
             |   |     R1     D1   |
 
117
             |   |                 |
 
118
             |   |    ___     ,,   |
 
119
             |   '---|___|----►|---+--- GND
 
120
             |         R2     D2
 
121
 
 
122
This is ok.  R1 and R2 are just the usual 340 ohms.  But we have to
 
123
bare in mind that each LED requires 10mA.  So the total current drawn
 
124
from the arduino pin will be 20mA, which is the most you're allowed to
 
125
draw.  So two LEDs is the most that we can drive, in parallel, directly
 
126
from a pin.
 
127
 
 
128
 
 
129
Using a transistor to drive multiple LEDs
 
130
=========================================
 
131
 
 
132
In both of the following diagrams, the resistor on the arduino pin,
 
133
R1, just needs to be something suitably high to provide a small
 
134
current on the base of the transistor. So, R1 could be 1kΩ.
 
135
 
 
136
Here's an "in series" set up
 
137
 
 
138
                           .----- 12V
 
139
                           |
 
140
                          |¯|
 
141
                          |_| R2
 
142
                           |
 
143
                           |
 
144
                           ▼  D1
 
145
                           ¯``
 
146
                           |
 
147
             |             |
 
148
             |             ▼  D2
 
149
             |             ¯``
 
150
             |             |
 
151
             |             |
 
152
             |             ▼  D3
 
153
             |             ¯``
 
154
             |             |
 
155
    Arduino  |    ___    ,-|
 
156
            o----|___|--(|< ) T
 
157
             |     R1    `-|
 
158
             |             |
 
159
             |             '----- GND
 
160
 
 
161
This is fine. D1, D2 and D3 will require a total of 4.5V across them
 
162
(1.5V each), leaving plenty of headroom (you've got 12V to play with).
 
163
R2 would be
 
164
 
 
165
    R2 = V/I = ( 12 - 1.5 - 1.5 - 1.5 ) / 0.01 = 750Ω
 
166
 
 
167
So the limit here is about 8 LEDs.
 
168
 
 
169
Something else to consider here is that the transistor actually also
 
170
requires 0.7V across it.  So in that calculation, the desired voltage
 
171
across R2 should actually be 12 - 1.5 - 1.5 - 1.5 - 0.7, but we can
 
172
safely ignore it in this example.
 
173
 
 
174
Here's an "in parallel" set up
 
175
 
 
176
                           .-------+-------+----- 12V
 
177
                           |       |       |
 
178
                          |¯|     |¯|     |¯|
 
179
                          |_| R3  |_| R4  |_| R5
 
180
             |             |       |       |  
 
181
             |             |       |       |
 
182
             |             ▼  D1   ▼  D2   ▼  D3
 
183
             |             ¯``     ¯``     ¯``
 
184
             |             |       |       |
 
185
             |             +-------+-------'
 
186
             |             |
 
187
    Arduino  |    ___    ,-|
 
188
            o----|___|--(|< )
 
189
             |     R1    `-|
 
190
             |             |
 
191
             |             '----- GND
 
192
 
 
193
Here, R3 = R4 = R5 = 340Ω, as usual.  The numbher of LEDs is limited
 
194
only by the current that can be drawn from the power supply.